利用遗传算法解决目标分配问题,其中采用传统的遗传算法
1
为了减小采煤机牵引部的体积,以MG650/1500-WD采煤机为例,建立牵引部行星齿轮减速机构的优化数学模型,并利用MATLAB软件编写模型的遗传算法优化程序对采煤机牵引部行星齿轮减速机构优化。优化后的行星齿轮减速机构体积减小,采煤机牵引部体积也相应减小,进而降低制造成本。优化结果对采煤机牵引部的进一步改进设计有一定的指导作用。
1
通过对遗传算法的工作原理以及具体操作步骤、遗传算法的优势进行阐述,对煤炭机械平面四杆机构所拥有的基本特性进行分析,并且根据煤炭机械的应用特征,用角位移误差以及行程速比系数作为优化的变量,且根据MATLAB软件中的遗传算法,构建平面四杆机构优化设计的模型,使原本复杂的煤炭机械平面四杆机构能够进一步缩短运行的周期与提高其运动的精度等进行优化设计。
2022-06-15 10:58:07 604KB 行业研究
1
:针对大多数图像分割方法计算量大、不利于实时处理的缺点,提出用微粒群算法(PSO)优化最小误差分割方法。该 方法不但具备最小误差分割法受目标和噪声影响小以及对小图像分割效果好的优点,还克服了遗传算法等加速算法需要预 先设定众多运行参数,受目标变化影响大的问题。图像分割的效果和速度得到了提高,性能也更加稳定。实验结果反映了该 方法的有效性。
1
该算法有助于初学者深入理解遗传算法,运用遗传算法求解最大值问题,求解TSP问题中的最短路径,问题中的求解的函数会在下一个帖子发布,如有问题可以询问QQ1846403892
2022-06-14 22:36:45 5KB matlab 深度学习 机器学习
1
GA遗传算法,标准遗传,多种群遗传 matlab版
2022-06-14 18:05:35 202.61MB matlab GA
1
非线性系统手册 第五版:混沌,分形,元胞自动机,遗传算法,基因表达式编程,支持向量机,小波,隐马尔可夫模型,模糊逻辑与C++、JAVA和SymbolicC++程序 出版时间:2013年版 内容简介   《非线性系统手册(第5版)》内容共分18章;第1章介绍一维、二维的非线性混沌映射,第2章介绍时间序列分析,第3章介绍平面自治系统,第4章介绍非线性哈密顿系统,第5章介绍非线性耗散系统,第6章介绍非线性动力学系统,第7章介绍混沌控制,第8章介绍混沌同步性,第9章介绍分形学,第10章介绍元胞自动机,第11章介绍微分方程求解,第12章介绍优化,第13章介绍神经网络,第14章介绍遗传算法,第15章介绍基因表达式程序设计,第16章介绍小波,第17章介绍离散隐马尔可夫过程,第18章介绍模糊集与模糊逻辑。《非线性系统手册(第5版)》包括丰富的非线性振动分析方法及其求解的程序设计。内容不仅丰富,而且实用,是研究非线性振动系统强大的工具用书。书中罗列了各种方法及其计算程序,对读者使用非常方便。《非线性系统手册(第5版)》所描述的非线性系统的分析方法都是经典的、常见的、实用的,它不仅对工程的非线性系统的分析具有重要意义,而且对非工程系统(政治学、经济学、社会学)的非线性分析同样具有重大意义。 目录 第1章 非线性混沌映射 1.1 一维映射 1.1.1 精确数值轨迹 1.1.2 不动点和稳定性 1.1.3 不变密度 1.1.4 李雅普诺夫指数 1.1.5 自相关函数 1.1.6 一维离散傅里叶变换 1.1.7 快速傅里叶变换 1.1.8 逻辑斯蒂映射和r∈3,4时的李雅普诺夫指数 1.1.9 逻辑斯蒂映射和分岔图 1.1.10 随机数字映射和不变密度 1.1.11 随机映射和随机积分 1.1.12 圆映射和旋转数 1.1.13 一维牛顿法 1.1.14 费根鲍姆常数 1.1.15 符号动力学 1.1.16 混沌排斥子 1.1.17 混沌编码 1.1.18 混沌通信 1.2 二维映射 1.2.1 引言 1.2.2 相图 1.2.3 不动点和稳定性 1.2.4 李雅普诺夫指数 1.2.5 关联积分 1.2.6 容量 1.2.7 超混沌 1.2.8 吸引域 1.2.9 复域内的牛顿法 1.2.10 高维牛顿法 1.2.11 Ruelle Takens Newhouse方案 1.2.12 映射的Melnikov分析 1.2.13 周期轨道和拓扑度 1.2.14 JPEG文件 第2章 时序分析 2.1 引言 2.2 相关系数 2.3 时间序列的李雅普诺夫指数 2.3.1 雅可比矩阵估算法 2.3.2 直接法 2.4 赫斯特指数 2.4.1 引言 2.4.2 赫斯特指数的实现 2.4.3 随机游走 2.5 Higuchi算法 2.6 复杂性 第3章 平面自治系统 3.1 不动点的类型 3.2 同宿轨道 3.3 一维钟摆 3.4 极限环系统 3.5 Lotka?Volterra系统 第4 章非线性哈密顿系统 4.1 哈密顿运动方程 4.2. 可积的哈密顿系统 4.2.1 哈密顿系统的初积分 4.2.2 Lax Pair和哈密顿系统 4.2.3 Floquet理论 4.3 哈密顿混沌 4.3.1 轨迹和Henon?Heiles哈密顿函数 4.3.2 表面分割法 第5章 非线性耗散系统 5.1 不动点和稳定性 5.2 轨迹 5.3 相位图 5.4 李雅普诺夫指数 5.5 广义生态模型 5.6 超混沌系统 5.7 霍普夫分岔 5.8 第一类时间积分 第6章 非线性动力学系统 6.1 介绍 6.2. 非谐波驱动系统 6.2.1 相位图 6.2.2 庞加莱截面 6.2.3 李雅普诺夫指数 6.2.4 自相关函数 6.2.5 功率谱密度 6.3. 动态摆 6.3.1 相位图 6.3.2 庞加莱截面 6.4. 参数动态摆 6.4.1 相位图 6.4.2 庞加莱截面 6.5 范德波尔动态方程 6.5.1 相位图 6.5.2 李雅普诺夫指数 6.6 参数化和激励动态摆 6.7 扭转系统 第7章 混沌控制 7.1 引言 7.2 奥特-吉尔伯格-约克方法 7.2.1 一维映射 7.2.2 差分方程系统 7.3 时间延迟反馈控制 7.4 微小周期扰动 7.5 共振扰动和控制 第8章 混沌同步性 8.1 引言 8.2 混沌同步性 8.2.1 同步性控制 8.2.2 同步子系统 8.3 耦合发电机的同步性 8.4 相耦合系统 第9章 分形学 9.1 引言 9.2 迭代函数系统 9.2.1 介绍 9.2.2 康托集 9.2.3 Heighway龙形曲线 9.2.4 谢尔宾斯基垫片 9.2.5 科赫曲线 9.2.6 分形蕨 9.2.7 灰度映射 9.3 Mandelbort集 9.4 Julia集 9.5 分形和克罗内克积 9.6 Lindenmayer系统和分形学 9.7 威尔斯特拉斯函数 9.8 Levy?Flight随机游走 第10章 元胞自动机 10.1 引言 10.2 自旋系统和元胞自动机 10.3 Sznajd模型 10.4 守恒定律 10.5 二维元胞自动机 10.6 按钮游戏 10.7 兰顿蚂蚁 第11章 解微分方程 11.1 引言 11.2 欧拉方法 11.3 李级数法 11.4 龙格库塔费尔伯格法 11.5 虚解法 11.6 辛积分 11.7 维莱特算法 11.8 史托马方法 11.9 无形混沌 11.10 首次积分和数值积分 第12章 优化 12.1 拉格朗日乘数法 12.2 坐标系 12.3 微分形式 12.4 Karush?Kuhn?Tucker条件 12.5 支持向量机 12.5.1 简介 12.5.2 线性决策界 12.5.3 非线性决策界 12.5.4 核Fisher判别分析 第13章 神经网络 13.1 引言 13.2 霍普菲尔德模型 13.2.1 引言 13.2.2 同步操作 13.2.3 能量函数 13.2.4 吸引域与吸引半径 13.2.5 伪吸引子 13.2.6 赫布定律 13.2.7 霍普菲尔德例型 13.2.8 霍普菲尔德C++程序 13.2.9 异步操作 13.2.10 平移不变模式识别 13.3 相似性度量 13.4 Kohonen网络 13.4.1 引言 13.4.2 Kohonen算法 13.4.3 Kohonen实例 13.4.4 旅行商问题 13.5 感知器 13.5.1 简介 13.5.2 布尔函数 13.5.3 线性可分集 13.5.4 感知器学习 13.5.5 感知器学习算法 13.5.6 一层和两层网络 13.5.7 异或问题和二分层网络 13.6 多层感知器 13.6.1 简介 13.6.2 Gybenko定理 13.6.3 反向传播算法 13.7 径向基函数网络 13.8 递归的确定性感知器神经网络 13.9 混沌神经网络 13.10 神经元振荡器模型 13.11 神经网络、矩阵和特征值 第14章 遗传算法 14.1 简介 14.2 有序遗传算法 14.3 模式定理 14.4 逐位运算 14.4.1 简介 14.4.2 汇编语言 14.4.3 浮点数与逐位运算 14.4.4 Java位集合类 14.4.5 C++位集合类 14.5 位向量类 14.6 Penna位串模型 14.7 一维映射的极大值 14.8 二维映射的最大值 14.9 寻找适应函数 14.10 带约束问题 14.10.1 引言 14.10.2 背包问题 14.10.3 旅行商问题 14.11 模拟退火算法 第15 章 基因表达式程序设计 15.1 引言 15.2 示例 15.3 数字符号处理 15.4 多表达式程序设计 第16章 小波 16.1 引言 16.2 多分辨率分析 16.3 塔式算法和离散小波 16.4 双正交小波 16.5 双二维小波 第17章 离散隐马尔可夫模型 17.1 引言 17.2 马尔可夫链 17.3 离散隐马尔可夫过程 17.4 前向-q后向算法 17.5 维特比算法 17.6 Baum?Welch算法 17.7 隐马尔可夫模型间的距离 17.8 C++程序 17.9 隐马尔可夫模型的应用 第18章 模糊集与模糊逻辑 18.1 引言 18.2 模糊集运算 18.2.1 逻辑运算 18.2.2 代数运算 18.2.3 反模糊化操作 18.2.4 用作模糊集的模糊概念 18.2.5 模糊限制语 18.2.6 量化模糊度 18.2.7 离散模糊集的C++程序实现 18.3 模糊数和模糊算法 18.3.1 引言 18.3.2 代数运算 18.3.3 LR表征法 18.3.4 模糊数的代数运算 18.3.5 模糊数的C++程序实现 18.3.6 应用 18.4 模糊规则系统 18.4.1 引言 18.4.2 模糊IF-THEN规则 18.4.3 倒立摆控制系统 18.4.4 B样条模型的模糊控制器 18.4.5 应用 18.5 模糊C-均值聚类 18.6 T-范数和T-补充范数 18.7 模糊逻辑网络 18.8 模糊海明距离 18.9 模糊真值和概率 参考文献
2022-06-14 16:30:45 22.25MB 混沌 元胞自动机 模糊逻辑 2013年
1
几种智能算法的原理 及应用介绍 学 院:计算机科学技术学院
1
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解
2022-06-13 12:53:59 4KB 遗传算法 TSP
1
遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法。文章介绍了遗传算法的形成发展和基本原理,对其特点、存在问题、研究方向及应用进行探讨。
2022-06-12 18:59:34 266KB 自然科学 论文
1