著名的图片分类数据集,原版的在CSDN已经有很多了,这一个版本的是我将原版的数据集导出成图片格式,同时用json文件来标注图片的类别。 本资源只包含CIFAR-10数据集中的训练集(5万张图片),测试集在我上传的其他资源中有。 压缩包内需要包括png格式的图片源文件及同名的json格式标注文件,可直接导入EasyDL中使用。 关于本数据集的官方介绍,请参见: http://www.cs.toronto.edu/~kriz/cifar.html
2023-03-15 16:54:48 140.8MB CIFAR-10 深度学习 EasyDL 图像分类
1
地址信息作为空间信息,在各行各业中的应用越来越广泛,通过日常地址和标准地址匹配获取到标准地址的经纬度的应用很广泛,目前在匹配中使用深度学习Bert模型的方法对地址进行分段分级,通过分级信息,对地址济宁精准匹配。
1
用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读).pdf PyTorch 对类别张量进行 one-hot 编码.pdf PyTorch 深度剖析:如何使用模型并行技术 (Model Parallel).pdf PyTorch 深度剖析:并行训练的 DP 和 DDP 分别在什么情况下使用及实例.pdf 模型部署翻车记:pytorch转onnx踩坑实录.pdf 超快速的端到端实例分割模型,手把手教你用opencv部署Yolact.pdf 视觉神经网络模型优秀开源工作:timm库使用方法和最新代码解读.pdf 实践教程 _ PyTorch中相对位置编码的理解.pdf 记一次坎坷的算法需求实现:轻量级人体姿态估计模型的修炼之路(附MoveNet复现经验).pdf 实践教程 _ 一文让你把Docker用起来!.pdf PyTorch 之 Checkpoint 机制解析.pdf 用OpenCV实现超轻量的NanoDet目标检测模型!.pdf Pytorch中Spatial-Shift-Operation的5种实现策略.pdf 实用教程详解:用Op
2023-03-15 00:09:31 41.76MB 深度学习 实战 踩坑 教程
1
对 Deep convolutional network cascade for facial point detection[CVPR13]一文的复现,可演示的可执行文件。 目前只实现了第一层。
2023-03-14 22:14:38 8.61MB 深度学习 deep learning 人脸标注
1
基于深度学习的疲劳驾驶检测方法研究.pdf
2023-03-14 20:19:16 20MB 深度学习 疲劳驾驶 学习资料
1
计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板,计算机毕设开题报告模板。
2023-03-14 13:32:46 59KB 计算机毕业
1
目标追踪与姿态估计实战课程(2021最新),完整版10章下载 课程主要包括两大核心模块: 1.目标追踪算法及其项目实战; 2.姿态估计算法及其项目实战。 课程通俗解读算法核心知识点,并基于源码进行实战解读,详细分析源码构建与项目流程。基于真实数据集与实际任务进行项目实战。
2023-03-14 10:43:08 123B 深度学习 人工智能 pytorch 目标追踪
1
预测Covid 深度学习模型,用于使用X射线图像检测Covid-19。这是一个简单的分类模型,基线准确度为94%。 严谨 以下命令将根据配置文件requirements.txt安装所有必需的软件包。 pip install -r requirements.txt 要运行该应用程序,请使用以下命令 streamlit run app.py
2023-03-14 10:20:47 10.18MB python deep-learning x-ray streamlit
1
sphereface的pytorch实现代码,2017的一篇cvpr,SphereFace: Deep Hypersphere Embedding for Face Recognition,继centerloss之后又一大作。 文章主要提出了归一化权值(normalize weights and zero biases)和角度间距(angular margin),基于这2个点,对传统的softmax进行了改进,从而实现了,最大类内距离小于最小类间距离的识别标准。
2023-03-14 09:33:10 21.11MB 深度学习
1
基于深度学习的生物信息学聚类方法 ”期刊的“”中发表的论文“基于深度学习的生物信息学聚类方法”的代码和补充材料。 此仓库将定期更新。 特别是,将添加更完整的Jupyter笔记本。 在本文中,我们回顾了基于深度学习的聚类分析方法,包括网络训练,表示学习,参数优化和制定聚类质量指标。 我们还讨论了在不同的场景(例如生物成像,基因表达聚类)中,基于不同的自动编码器体系结构(例如,香草,变异,LSTM和卷积)的表示学习如何比基于ML的方法(例如,PCA)更有效。 ,以及将生物医学文本聚类。 基于深度学习的无监督/聚类方法,链接到论文和代码 我们提供了基于深度学习的无监督/聚类方法,论文链接和代码的列表。 此外,还将列出提出新方法和论文的文章。 敬请期待! 标题 文章 会议/期刊 代码 卷积自动编码器(DCEC)的深度聚类 ICONIP'2017 用于一致性培训(UDA)的无监督数据增强 Arx
1