标题“ultralytics-yolov8”指向了一个深度学习模型或者框架的项目,从标题中可以推断出项目与“YOLOv8”相关,而“YOLO”代表“YOU ONLY LOOK ONCE”,是一个知名的实时目标检测系统。项目名中的“ultralytics”可能是开发该模型的公司或团队名称。 描述部分仅含有“yolov8”,重复多次,这可能是由于文件传输过程中出现了错误,或者是描述信息缺失导致的,因此无法从中提取额外信息。 标签“yolov8”表明该项目或文件与YOLOv8有直接的关联,标签通常用于分类和检索,是文件或项目主题的关键词。 文件名称列表中包含多个文件,每个文件都承载着特定的功能和信息: - CITATION.cff:这是一个Citation File Format文件,用于提供引用项目所需的元数据,帮助作者和研究人员在学术论文或其他出版物中引用该软件。 - .gitignore:此文件指定了在使用Git版本控制系统时应忽略的文件模式,避免将某些文件如日志、临时文件、系统文件等纳入版本控制。 - LICENSE:该文件包含了项目使用的许可协议,规定了用户可以如何使用、修改和分发该项目的代码。 - README.zh-CN.md:这是项目的中文自述文件,通常包含项目介绍、安装说明、使用方法、贡献指南等重要信息,帮助用户理解项目内容。 - CONTRIBUTING.md:该文件描述了如何为项目做出贡献的指南,包括代码提交规范、开发流程和交流渠道等信息。 - pyproject.toml:这是一个Python项目的配置文件,包含了项目依赖、构建系统配置以及其它项目相关的元数据。 - readme.txt:这是项目的另一个自述文件,可能是旧版本的README文件,或者是其他类型的说明文件。 - .pre-commit-config.yaml:这是一个预提交钩子配置文件,用于指定git pre-commit hook的行为,通常用于代码风格检查、安全检查等自动化的代码质量保证措施。 - mkdocs.yml:这是MkDocs项目的配置文件,MkDocs是一个用于构建项目文档的快速、简单、强大的静态站点生成器,该文件通常包含了文档站点的配置信息。 - .github:这个文件夹通常包含了与GitHub平台相关的配置文件,比如工作流配置、议题模板、拉取请求模板等,为项目的管理和维护提供了便利。 该压缩包文件涉及的可能是YOLOv8项目的相关文档和配置,而YOLOv8作为一个目标检测系统,被广泛应用于图像识别、视频监控、自动驾驶等领域。
2025-08-07 22:40:31 4.97MB
1
YOLOv8-seg是一种基于YOLO(You Only Look Once)系列的深度学习目标检测与分割模型,专门针对实时图像分割任务设计。该模型在YOLOv8的基础上进行了改进,以提升目标检测和像素级别的分割性能。YOLO系列模型以其快速高效而闻名,而YOLOv8-seg则在保持速度优势的同时,增加了对复杂场景中目标轮廓的精确捕捉能力。 YOLOv8-seg的核心特性在于其结合了目标检测和语义分割,使得模型不仅能够定位出图像中的目标,还能对目标进行像素级别的分类,为每个像素分配一个类别标签。这种联合处理方式对于自动驾驶、机器人导航、医学影像分析等应用领域具有极高的价值。 模型权重文件 yolov8x-seg.pt、yolov8l-seg.pt、yolov8m-seg.pt、yolov8s-seg.pt、yolov8n-seg.pt 分别代表不同规模和性能的模型版本。这些后缀表示模型的大小和计算复杂度,通常“x”代表最大模型,“l”代表大型模型,“m”代表中型模型,“s”代表小型模型,“n”可能表示更轻量级的模型。不同的模型适用于不同的硬件资源和应用场景:较大的模型可能提供更高的精度,但需要更多的计算资源;而较小的模型则更适合资源有限的设备,如嵌入式系统或移动设备。 YOLOv8-seg的训练通常涉及大规模标注的数据集,如COCO(Common Objects in Context)、Cityscapes等,这些数据集包含了丰富的目标类别和详细的像素级分割标签。模型训练过程中会通过反向传播优化损失函数,调整网络参数,以达到最小化预测与真实标签之间的差距。 在实际应用中,YOLOv8-seg模型可以被集成到各种计算机视觉系统中,例如通过Python的PyTorch框架加载权重文件,利用预训练模型进行推理。用户可以根据具体需求选择适合的模型版本,通过API调用来实现目标检测和分割功能。 YOLOv8-seg是YOLO系列的一个重要分支,它在目标检测的基础上拓展了分割功能,提供了一套全面的解决方案,能够在多种场景下高效地执行实时的图像理解和处理任务。模型的不同版本满足了从高性能服务器到低功耗移动设备的广泛需求,是当前计算机视觉领域的热门研究方向之一。
2025-08-04 15:41:11 284.31MB
1
"道路病害检测数据集:包含5万3千张RDD图像,多类型裂缝与坑槽的精准识别,已划分训练验证集,支持YOLOv5至v8模型直接应用,Yolov8模型map值达0.75,高清1920x1080分辨率",道路病害检测数据集 包含rdd一共 5w3 张 包含:横向裂缝 0、纵向裂缝 1、块状裂缝 2、龟裂 3 、坑槽 4、修补网状裂缝 5、修补裂缝 6、修补坑槽 7 数据集已划分为训练集 验证集 相关YOLOv5 YOLOv6 YOLOv7 YOLOv8模型可直接使用的 Yolov8map值 0.75 1920*1080 ,道路病害检测; RDD数据集; 横向裂缝; 纵向裂缝; 块状裂缝; 龟裂; 坑槽; 修补网状裂缝; 修补裂缝; 修补坑槽; 数据集划分; YOLOv5; YOLOv6; YOLOv7; YOLOv8模型; Yolov8map值; 分辨率1920*1080,基于道路病害识别的多模式裂缝数据集(含YOLOv5-v8模型应用)
2025-07-23 21:58:53 415KB scss
1
yolov8图像分类模型
2025-07-21 14:29:40 12.23MB 图像分类
1
yolov8s.pt 是 YOLOv8 模型系列中的一个预训练模型文件,具体来说是 YOLOv8 的小型(small)版本。YOLO(You Only Look Once)是一种流行的实时对象检测系统。 YOLOv8s.pt 的特点 小型化:yolov8s.pt 强调的是“small”版本,这意味着它在模型大小和计算复杂度上进行了优化,以便在资源受限的设备(如边缘设备或移动设备)上运行。尽管模型较小,但它仍然保持了相当不错的检测性能。 高性能:尽管是小型版本,但 YOLOv8s 仍然能够在保持实时检测速度的同时,提供准确的检测结果。这得益于其先进的模型架构和训练策略。 易于使用:YOLOv8 旨在提供易于使用和部署的解决方案。yolov8s.pt 文件可以直接加载到 PyTorch 环境中,进行进一步的推理或微调。 多尺度检测:YOLOv8 继承了 YOLO 系列的多尺度检测能力,能够检测不同大小的物体。这对于实际应用中的复杂场景非常有用。 广泛的适应性:由于 YOLOv8 的高效性和准确性,它被广泛用于各种应用场景,包括视频监控、自动驾驶、机器人视觉等。
2025-06-19 16:34:00 19.88MB pytorch
1
YOLOv8与Masked ORB SLAM3结合的动态SLAM研究是一种前沿的计算机视觉和机器人技术,它结合了深度学习和经典视觉SLAM技术的优势,旨在解决动态环境中地图构建和定位的问题。YOLOv8代表了You Only Look Once的最新版本,是一种实时目标检测系统,它能够在图像中快速准确地识别和定位多种物体。而ORB SLAM3是同时定位与地图构建(SLAM)领域的一个重要算法,它能够在一个三维空间内,利用特征点来跟踪相机的位置,并同时构建出环境的地图。 将YOLOv8应用于动态SLAM中,可以为系统提供实时的物体识别能力,这样系统在处理动态变化的场景时,不仅能识别静态环境中的特征点,还能区分并跟踪动态物体。这种能力对于自动驾驶车辆、机器人导航和增强现实等应用至关重要,因为它们经常需要在不断变化的环境中准确地定位和导航。 动态SLAM研究的核心挑战之一是如何有效地区分并处理静态和动态物体。通过引入YOLOv8,系统可以对图像中的动态物体进行检测和跟踪,而Masked ORB SLAM3则负责从图像中提取静态环境的特征点,并构建稳定的地图。通过这种方式,算法能够同时对动态物体和静态环境进行建模,提高SLAM系统的鲁棒性和准确性。 此外,结合深度学习的SLAM系统还需要解决数据融合、时间同步和计算资源优化等技术难题。例如,YOLOv8模型需要快速处理来自摄像头的图像数据,而SLAM算法需要高效地处理来自传感器的位姿信息。因此,研究者需要设计出高效的算法来平衡和融合这两方面的信息。 在实际应用中,动态SLAM系统的性能受到多种因素的影响,包括光照变化、场景复杂度、物体运动速度和相机运动方式等。因此,研究者还需要对系统进行大量的测试和优化,以确保算法在不同的场景下都能稳定运行。 动态SLAM研究是一个跨学科领域,它结合了深度学习、计算机视觉、机器人学和传感器融合技术,其目的是为了提高机器在复杂和动态环境中的自主导航能力。YOLOv8与Masked ORB SLAM3的结合为这一领域提供了新的解决方案,其研究成果将对未来的机器人技术产生深远的影响。
2025-06-19 00:55:29 602.46MB
1
YOLOv8算法是一种先进的目标检测算法,其本质是一种基于深度学习的计算机视觉技术,通过训练深度卷积神经网络,能够从输入图像中提取特征并实现目标的检测。YOLOv8算法之所以能够在目标检测领域占据重要地位,是因为它在准确性和实时性上表现出色,并广泛应用于安防、监控、无人驾驶等多个领域。 YOLOv8算法的核心步骤包括特征提取、区域生成、物体定位、分类与边界框调整以及优化与改进。在特征提取阶段,YOLOv8利用深度卷积神经网络对输入图像进行特征提取,网络中包含多个卷积层和池化层,通过不断学习图像数据集中的特征,实现对图像关键信息的有效提取。特别地,YOLOv8的Backbone部分参考了CSPDarkNet-53的结构并引入了C2f结构,优化了梯度流动并增强了模型性能。区域生成阶段使用RPN方法生成一系列候选区域,并对每个区域进行进一步的特征提取和分析,以确定物体的位置和大小。接下来,通过分类和边界框调整步骤,将预测结果与预设的类别阈值进行比较,确定是否为真实目标,并根据物体的位置和大小信息调整检测框。此外,YOLOv8还采用了多尺度训练策略和注意力机制,对网络结构进行了优化,这些优化改进措施显著提升了模型的性能。 YOLOv8的推理过程包括预处理、特征提取、特征融合、目标检测和后处理。在预处理阶段,对输入图像进行归一化和尺寸调整等操作,然后利用Backbone提取特征,在Neck部分进行特征融合,增强模型的多尺度检测能力,再送入Head部分进行目标检测,最后通过后处理如NMS操作去除冗余检测框,得到最终的检测结果。 YOLOv8算法的Pytorch实现可以通过官方GitHub仓库或社区维护的分支和项目中获取。安装YOLOv8所需的Pytorch环境,需要确保安装了PyTorch,并使用pip安装仓库中的requirements.txt文件所列的依赖项。接着,通过Git克隆YOLOv8仓库,并使用提供的权重文件和基本命令进行模型的训练、评估以及对象检测。 YOLOv8算法随着不断的优化和改进,在目标检测领域具有广阔的应用前景。作为YOLO系列的一个更新版本,YOLOv8继承了YOLOv5和YOLOv7的优点,并进一步进行优化,实现了速度和准确性上的新突破。通过优化网络结构和算法设计,YOLOv8正在成为实时目标检测的重要选择。
2025-06-11 18:18:40 16KB pytorch
1
基于YOLOv8的URPC2021水下目标检测实验:海参、海胆、扇贝与海星的精准识别,基于YOLOv8的水下多目标检测系统:以URPC2021数据集的多种海产动物为研究对象,基于YOLOv8的水下目标检测 实验使用URPC2021数据集。 该数据集包含:海参“holothurian”,海胆“echinus”,扇贝“scallop”和海星“starfish”等四类。 检测数据集包含YOLO txt格式。 图片数量如下: train(6468张) val(1617张) 项目采用yolov8s进行训练,使用pyqt5设计了界面,可直接检测。 ,核心关键词: 1. YOLOv8 2. 水下目标检测 3. URPC2021数据集 4. 海参、海胆、扇贝、海星 5. 检测数据集(YOLO txt格式) 6. 训练 7. 图片数量(train/val) 8. yolov8s 9. pyqt5 10. 界面检测,基于YOLOv8的URPC2021水下目标检测实验
2025-06-09 11:02:18 247KB css3
1
内容概要:本文是YOLOv8数据集构建与训练的VIP专享指南,详细介绍了从数据采集到模型部署的全流程。首先提供了官方数据集标准模板,涵盖COCO和YOLO格式,并附带了标注工具VIP加速包推荐。接着阐述了自定义数据集构建流程,包括硬件要求、数据清洗技巧(如模糊图像过滤)、高级标注策略(如困难样本挖掘)。然后深入探讨了数据增强方法,从基础增强组合到针对特殊场景的增强方案,如夜间检测、小目标密集场景等。训练优化部分则给出了数据集划分比例、超参数调优模板以及多GPU训练指令。最后分享了数据集质量诊断与优化方法,以及两个高级实战案例(无人机巡检和工业缺陷检测),并提供了一份模型部署前的数据校验清单。 适合人群:面向有一定深度学习基础,特别是从事计算机视觉领域的研究人员和工程师。 使用场景及目标:①帮助用户掌握YOLOv8数据集构建的完整流程;②通过实例教学提升数据集质量和模型性能;③为实际项目中的YOLOv8应用提供参考和指导。 阅读建议:由于本文涉及大量技术细节和实践操作,建议读者结合具体案例进行学习,并动手实践文中提到的各种工具和技术,以便更好地理解和应用YOLOv8的相关知识。
2025-06-02 22:41:16 26KB 数据增强 COCO格式 自定义数据集
1
"深度学习YOLOv8+Pyqt5联合打造实时吸烟行为检测系统:完整源码+数据集+详细说明,助力禁烟政策执行",基于深度学习YOLOv8与Pyqt5集成,全方位公共场所抽烟检测与识别系统,附带全套源码及详细指南——轻松构建、跑通与定制升级,基于深度学习YOLOv8+Pyqt5抽烟吸烟检测识别 将获得完整源码+数据集+源码说明+配置跑通说明 可以额外付费远程操作跑通程序、定制其他课题 支持图片、视频、摄像头检测 在现代社会,公共场所的禁烟政策越来越严格,以减少二手烟对非吸烟者的影响。 然而,监管和执行这些政策仍然面临挑战。 本文提出了一种基于YOLOv8(You Only Look Once version 8)的抽烟检测系统,该系统结合了深度学习技术和PyQt5图形用户界面框架,旨在实时监测并识别公共场所中的吸烟行为。 该系统的设计考虑了实时性、准确性和用户友好性,为提高公共场所的空气质量和遵守禁烟规定提供了。 ,基于深度学习; YOLOv8; Pyqt5; 抽烟检测识别; 完整源码; 数据集; 配置跑通说明; 远程操作; 定制课题; 图片/视频/摄像头检测; 禁烟政策; 实时监测;
2025-05-28 15:49:00 1.91MB csrf
1