烟火检测是一种计算机视觉任务,主要用于识别和定位图像或视频中的烟雾和火焰。这类检测在森林防火、工业安全监控、智能城市监控等应用中具有重要意义。与其他目标检测任务相比,烟火检测具有一些独特的挑战,如火焰的形状不规则、颜色变化多端、背景复杂等。 YOLO等实时目标检测算法由于其速度快、全局推理的特点,也被应用于烟火检测任务中。通过训练YOLO模型,检测系统能够快速识别出图像或视频中的烟雾和火焰区域,并在实际场景中实时预警。 优点: YOLO在烟火检测中的高效性使其能够在实时视频流中快速做出检测,适合应用于监控系统、无人机巡检等场景。 缺点: 在烟雾、火焰形状复杂多变的情况下,YOLO可能需要通过大量数据增强和模型优化来提升检测精度。 应用场景: 森林防火监控: 利用烟火检测系统对森林进行实时监控,及时发现火灾隐患。 工业安全: 在工厂、石化等高危环境中,烟火检测系统可以帮助快速发现火灾源头,减少财产损失和人员伤亡。 城市监控: 智能监控系统结合烟火检测算法,能够在城市公共区域实时预警火灾,提高城市安全。 烟火检测技术的发展有助于提升火灾预防和应急响应的效率,减少火灾带来的危害。
2025-05-07 16:05:13 125.45MB 目标检测 烟火识别 深度学习
1
【资源说明】 YOLOv8部署瑞芯微RK3588板端c++源码(含使用说明).zipYOLOv8部署瑞芯微RK3588板端c++源码(含使用说明).zip ## 编译和运行 1)编译 ``` cd examples/rknn_yolov8_demo_open bash build-linux_RK3588.sh ``` 2)运行 ``` cd install/rknn_yolov8_demo_Linux ./rknn_yolov8_demo ``` 注意:修改模型、测试图像、保存图像的路径,修改文件为src下的main.cc ``` 测试效果 冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分) ![images](test_result.jpg) (注:图片来源coco128) 说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的是coco128的128张图片数据进行训练的,且迭代的次数不多,效果并不是很好,仅供测试流程用。换其他图片测试检测不到属于正常现象,最好选择coco128中的图像进行测试。 把板端模型推理和后处理时耗也附上,供参考,使用的芯片rk3588。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
2025-05-06 11:48:23 33.48MB 毕业设计 课程设计 期末大作业 RK3588
1
内容概要:本文介绍了一种基于YOLOv8改进的高精度红外小目标检测算法,主要创新点在于引入了SPD-Conv、Wasserstein Distance Loss和DynamicConv三种关键技术。SPD-Conv通过空间到深度变换保留更多小目标特征,Wasserstein Distance Loss提高了对小目标位置和尺寸差异的敏感度,DynamicConv则实现了卷积核的动态调整,增强了对不同特征模式的适应性。实验结果显示,改进后的算法在红外小目标检测任务中取得了显著提升,mAP从0.755提高到0.901,同时在其他小目标检测任务中也有良好表现。 适合人群:从事计算机视觉、目标检测研究的技术人员,尤其是对红外小目标检测感兴趣的开发者。 使用场景及目标:适用于需要高精度检测红外小目标的应用场景,如工业质检、无人机监控、卫星图像分析等。目标是提高小目标检测的准确性和召回率,降低误检率。 其他说明:文中提供了详细的代码实现和技术细节,帮助读者理解和复现实验结果。建议在实践中根据具体应用场景调整模型配置和参数设置。
2025-05-05 20:41:18 954KB
1
YOLOv8是YOLO(You Only Look Once)系列目标检测算法的最新版本,这个预训练权重集合提供了五个不同的模型权重文件,旨在帮助用户快速应用和改进目标检测任务。YOLO系列是实时物体检测领域的热门框架,以其高效、准确的特点在计算机视觉领域广受欢迎。 YOLO(You Only Look Once)首次提出于2016年,由Joseph Redmon等人研发,其核心思想是将图像分类和边界框预测相结合,通过单次网络前传完成物体检测。与传统方法相比,YOLO减少了复杂的区域建议步骤,大大提升了检测速度。随着版本的迭代,YOLOv2、YOLOv3、YOLOv4和YOv5不断优化了网络结构,提升了检测精度和速度的平衡。 YOLOv8作为YOLO系列的最新成员,可能引入了以下改进: 1. **网络架构优化**:YOLOv8可能采用了新的网络设计,比如更高效的卷积层、空洞卷积(atrous convolution)、残差连接等,以提高特征提取的能力,同时保持推理速度。 2. **损失函数改进**:YOLO系列通常使用多任务损失函数,结合分类和定位误差。YOLOv8可能会调整这个损失函数,使其更利于平衡不同类别和尺度的目标检测。 3. **数据增强策略**:为了提高模型的泛化能力,预训练权重通常是在大量经过增强的数据上训练得到的。YOLOv8的权重可能包含了多种数据增强技术,如随机翻转、缩放、裁剪等。 4. **预训练模型**:提供的预训练权重表明模型已经在大规模数据集(如COCO或ImageNet)上进行了训练,这使得用户可以直接使用这些权重进行迁移学习,减少从头训练的时间和计算资源。 5. **多尺度检测**:YOLOv8可能会继续采用多尺度预测策略,以适应不同大小的目标,提升小目标检测性能。 下载并使用这些预训练权重,用户可以快速部署自己的目标检测应用,或者将其用作基础模型,进一步微调以适应特定任务。对于研究人员来说,分析和理解YOLOv8的网络结构和权重分布有助于探索更先进的目标检测技术。 在实际应用中,用户需要根据自己的需求选择合适的权重文件,并确保有对应的配置文件来指导模型加载。同时,为了在新数据集上获得良好的性能,可能需要进行一定的数据预处理和后处理操作,例如归一化输入图像、解析预测结果等。在训练或微调过程中,调整学习率、批次大小、训练轮数等超参数也是关键步骤。 YOLOv8预训练权重集合为开发者和研究者提供了一个强大的起点,用于快速实现目标检测功能,或者进行进一步的算法研究和优化。
2025-04-29 09:58:22 270.08MB 目标检测
1
《基于YOLOv8的智慧矿山矿石粒度分析系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
2025-04-28 13:31:34 24.21MB
1
YOLOv8官方预训练模型深度解析》 YOLO(You Only Look Once)是一种流行的实时目标检测系统,自2016年首次提出以来,已经经历了多次迭代和改进。此次我们关注的是YOLOv8,它在YOLO系列中扮演着重要的角色,尤其体现在模型的性能优化和速度提升上。提供的预训练模型包括了yolov8l.pt、yolov8m.pt、yolov8n.pt、yolov8s.pt和yolov8x.pt,分别代表了不同规模和性能的版本,适用于不同的应用场景。 1. YOLOv8的核心改进: YOLOv8相较于之前的YOLO版本,主要优化了网络结构和损失函数,以提高检测精度和减少计算复杂度。可能引入了如Focal Loss来解决类别不平衡问题,也可能采用了更高效的卷积层设计,如Conformer或MobileNetV3的轻量化结构,以实现更快的推理速度。 2. 预训练模型的多样性: - yolov8l.pt:大模型,通常具有更高的精度,但计算量和内存需求较大,适合在资源充足的环境中进行高精度目标检测。 - yolov8m.pt:中等规模模型,平衡了精度与效率,是大多数应用的首选。 - yolov8n.pt:小模型,设计用于资源有限的设备,如嵌入式系统和移动端。 - yolov8s.pt:更小的模型,牺牲部分精度以换取极致的速度。 - yolov8x.pt:可能是超大规模模型,旨在挑战更高的性能上限。 3. 预训练模型的应用: 这些预训练模型可以直接应用于目标检测任务,用户只需将它们部署到自己的项目中,通过微调或直接使用,可以快速实现目标检测功能。比如,yolov8x.pt可用于需要高精度的安防监控、自动驾驶等领域;而yolov8n.pt则适用于对资源有限的IoT设备进行物体识别。 4. 使用指南: 用户可以利用PyTorch等深度学习框架加载这些预训练模型,通过readme.png中的说明了解如何进行预测和调整模型参数。在实际应用中,还需要准备相应的数据集进行模型的后处理和微调,以适应特定场景的需求。 5. 模型评估与优化: 对于预训练模型,评估其性能通常通过平均精度(mAP)、速度和其他指标。如果模型表现不佳,可以尝试调整超参数、增加训练数据或者进行模型剪枝等优化手段。 YOLOv8的预训练模型为开发者提供了便利,它们涵盖了各种性能需求,用户可以根据实际应用环境选择合适的模型。同时,这些模型也展示了YOLO系列在目标检测领域的持续进步,为深度学习在实际应用中的发展提供了有力支持。
2025-04-24 15:58:10 269.62MB
1
这一资源包含了完整的YOLOv8目标追踪项目的源码和相关数据集,旨在为学习和研究YOLOv8提供一个实际操作的案例。资源内的源码基于最新的YOLOv8模型,专注于实现高效准确的物体追踪功能,并且适用于各种现实场景。此外,还附带了用于训练和测试的数据集,这些数据集经过精心选择和预处理,以确保可以有效地用于模型的训练和验证。无论您是深度学习领域的初学者,还是希望在自己的项目中实现物体追踪功能的开发者,这个资源都将是一个简单的参考。通过下载和探索这个资源,您可以方便地理解YOLOv8的工作原理,并在实际项目中应用这一先进的目标追踪技术。 该源码是和《超详细概述YOLOV8实现目标追踪任务全解析》相对应的,大家下载这份源码后,有不明白的地方可以直接看这个博客进行进一步的理解。
2025-04-24 15:45:14 207.68MB 数据集
1
基于YOLOv8算法的轨道异物智能检测系统:含数据集、模型训练与可视化展示的全面解决方案,基于YOLOv8算法的轨道异物智能检测系统:含模型训练与评估、可视化展示及pyqt5界面设计指南,十四、基于YOLOv8的轨道异物检测系统 1.带标签数据集,100张图片。 2.含模型训练权重和指标可视化展示,f1曲线,准确率,召回率,损失曲线,混淆矩阵等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,YOLOv8; 轨道异物检测; 带标签数据集; 模型训练; 权重; 指标可视化; f1曲线; 准确率; 召回率; 损失曲线; 混淆矩阵; pyqt5界面设计; 环境部署说明; 算法原理介绍。,基于YOLOv8的轨道异物智能检测系统:模型训练与可视化展示
2025-04-24 09:49:33 1.31MB
1
火灾和烟雾检测对于确保公共安全和防止财产损失是至关重要的任务。随着计算机视觉和深度学习的最新进展,可以使用自定义数据集构建准确的火灾和烟雾检测系统。其中一个系统是YOLOv8,这是一种最先进的目标检测模型,可以训练用于检测火灾和烟雾的自定义数据集。
2025-04-23 10:37:13 374.06MB 计算机视觉 深度学习 数据集 目标检测
1
YOLOv8单目测距代码实现了一种基于深度学习模型进行单目相机测距的方法。在该代码中,首先通过深度学习模型检测视频帧中的物体,然后利用单目相机的几何关系,结合已知物体尺寸与图像中对应物体的像素宽度,计算出摄像头的焦距和物体距离。 代码实现的核心步骤如下: 1. 导入所需库:代码中使用了`cv2`库进行图像处理,`ultralytics`库中的`YOLO`类用于加载YOLOv8模型进行目标检测。 2. 定义计算焦距的函数:`focal_length`函数通过给定物体的测量距离(实际距离)、实际宽度与图像中的像素宽度,计算出摄像头的焦距。 3. 定义计算距离的函数:`distance_finder`函数则根据已知的焦距、物体的实际宽度与图像中的像素宽度,计算出物体与摄像头之间的距离。 4. 加载YOLOv8模型并进行推理:通过`YOLO`类加载模型文件`yolov8n.pt`,并对视频帧进行处理。模型在处理图像后,会返回检测到的物体的信息,包括物体的边界框坐标等。 5. 视频帧遍历与测距:通过循环遍历视频帧,读取每一帧并在其上运行YOLOv8模型进行目标检测。然后,针对检测结果中的人脸(或其他指定物体),计算其像素宽度,并使用之前定义的函数计算距离。 6. 结果输出:将每一帧中检测到的人脸与摄像头的距离计算出来,并打印输出。同时,显示带注释的视频帧,以便观察检测与测距效果。 整个过程涉及图像处理、深度学习模型推理以及单目视觉几何计算。YOLOv8模型在这个过程中的作用是识别和定位视频帧中的物体,为测距提供必要的边界框数据。 此外,代码中还包含了用户交互部分,比如通过按键盘上的'q'键可以中断视频帧的遍历,结束程序。在视频遍历结束后,释放视频捕获对象并关闭显示窗口,确保程序能够正常退出。 在技术实现上,YOLOv8模型的加载与推理是该单目测距过程中的关键步骤。YOLO系列模型因其速度快、准确度高而广泛应用于目标检测任务中,而将模型推理结果应用于实际的物理距离测量,则进一步扩展了其应用场景。 代码中还演示了如何将模型推理结果转换为人类可读的可视化界面,为使用者提供了直接的交互体验。这不仅增加了程序的实用性,也使得技术成果更容易被非专业用户理解和接受。
2025-04-23 09:49:49 3KB
1