在线实例分类器细化(OICR)的多实例检测网络的PyTorch实现 如何开始 git clone http://www.github.com/jd730/OICR-pytorch 依存关系 Python 3.5或更高版本 火炬0.4.0(不是0.4.1) CUDA 8.0或更高 资料准备 PASCAL_VOC 07 + 12 :请按照中的说明准备VOC数据集。 实际上,您可以参考其他任何人。 下载数据后,在文件夹data /中创建软链接。 选择性搜寻 wget https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz tar -xvf selective_search_data.tgz rm -rf selective_search_data.tgz 将selective_search_
2023-07-19 20:23:35 4.79MB computer-vision pytorch object-detection weakly
1
正版安装包 看好了 眼瞎的别BB 怎么没有授权 光想免费午餐 早晚吃亏 一百二百的你还想要什么自行车 十几万的软件还想免费么
2023-07-01 15:00:36 121B 软件/插件 板式家具 拆单软件 美国CV
1
Cabinet Vision (CV) 板式家具拆单软件 V2022.4.622中文语言包
2023-07-01 14:57:36 121B 软件/插件 板式家具 拆单软件 美国CV
1
用单个深度学习模型替换移动相机ISP 1.概述 该库提供了RAW到RGB映射方法的实施和PyNET CNN在介绍。 该模型经过训练,可以将直接从移动相机传感器获得的RAW Bayer数据转换为使用专业的佳能5D DSLR相机拍摄的照片,从而取代了整个手工制作的ISP相机产品线。 提供的预训练PyNET模型可用于从使用Sony Exmor IMX380相机传感器捕获的RAW(DNG)图像文件生成全分辨率12MP照片。 对于华为P20和BlackBerry KeyOne智能手机,此方法的更多视觉效果可在找到。 2.先决条件 Python:scipy,numpy,imageio和枕头套件 + 英伟达GPU 3.第一步 下载预训练的 ,并将其放入vgg_pretrained/文件夹。 下载经过预训练的,并将其放入models/original/文件夹中。 将下载并将其提取到raw_images/文件夹中。 此文件夹应包含三个子文件夹: train/ , test/和full_resolution/ 请注意,Google云端硬盘的配额限制了每天的下载量。 为了避免这种情况,您可以
2023-06-17 20:47:57 21KB photos mobile computer-vision deep-learning
1
Cabinet Vision (CV) 板式家具拆单软件 V9 177中文语言包
2023-06-13 21:54:20 121B 软件/插件 板式家具 拆单软件 美国CV
1
头部姿势估计-OpenCV 在计算机视觉中,姿势估计特别是指对象相对于相机的相对方向。 姿势估计在计算机视觉中通常称为“透视n点”问题或PNP问题。 样片 安装 使用包管理器 。 pip install -r requirements.txt cd models bash downloader.sh cd .. 用法 从图像获取姿势 python head_pose_from_image.py -h 从网络摄像头获取姿势 python head_pose_from_webcam.py -h #### For source 0 and focal length 1 python head_pose_from_webcam.py -f 1 -s 0 3D模型可视化 python Visualize3DModel.py
2023-05-11 18:55:37 7.38MB opencv computer-vision headpose-estimation Python
1
MAE论文阅读汇报ppt,组会可参考
2023-05-11 18:28:11 660KB 论文分享
1
收割 一个简单的基于机器学习的网站,推荐最佳农作物,肥料和农作物所患疾病 动机 农业是影响一国经济增长的主要部门之一。 在像印度这样的国家,大多数人口以农业为生。 机器学习和深度学习等许多新技术正在农业中实施,因此农民可以更轻松地发展并最大程度地提高产量。 在这个项目中,我提供一个网站,其中实现了以下应用程序; 作物推荐,肥料推荐和植物病害预测。 在农作物推荐应用程序中,用户可以从他们的侧面提供土壤数据,并且该应用程序将预测用户应该种植哪种农作物。 对于肥料推荐应用程序,用户可以输入土壤数据和他们正在生长的农作物的类型,该应用程序将预测土壤缺乏或过量的土壤,并会提出改进建议。 对于最后一个应用程序,即植物病害预测应用程序,用户可以输入患病植物叶片的图像,该应用程序将预测它是什么病害,并且还会提供有关该病害的一些背景知识以及如何治愈该病害的建议。 数据源 (定制数据集) (定制数
2023-04-25 09:07:25 60.2MB computer-vision deep-learning machinelearning crops
1
计算机视觉方向经典教材,英文原版,彩色
2023-04-19 00:44:09 48.98MB 计算机视觉 英文 彩版
1