BERT只是一个预训练的语言模型,在各大任务上都刷新了榜单。我们本次实验的任务也是一个序列标注问题,简而言之,就是是基于BERT预训练模型,在中文NER(Named Entity Recognition,命名实体识别)任务上进行fine-tune。 Fine-tune是什么意思,中文译为微调。在transfer learning中,对事先训练好的特征抽取网络,直接拿来用在下游任务上。固定其特征抽取层的网络参数,只在原有的网络上增加少量神经元,做最后的分类任务,而且只更新分类参数。
2021-04-20 19:51:43 479KB nlp bert
1
基于Tensorflow1.x实现BiLstm+CRF,代码可运行,包括中药说明书实体识别挑战的比赛数据。
2021-04-18 18:54:56 2.64MB 命名实体识别 BiLstm CRF
1
使用深度学习方法BiLSTM,并结合CRF模型的标签依赖性特点,解决命名实体识别的序列标注问题
2020-01-03 11:37:23 123KB BiLSTM-CRF Deep Learnin
1