自动加权GCN算法实现反洗钱识别-数据集自动加权GCN算法实现反洗钱识别-数据集自动加权GCN算法实现反洗钱识别-数据集
2023-02-14 20:37:26 14.89MB 深度学习
1
LaneGCN源码分享
2023-02-14 16:42:13 18.67MB 轨迹预测 gcn 源码
1
Extended-SimGNN-master源代码(SimGNN方法代码,精华版,可直接运行)
2023-02-14 15:16:57 770KB GNN GCN 图相似度计算 深度学习
1
拼写GCN 是中文拼写检查的一种方法,它将视觉和形态学知识嵌入到BERT中。 该存储库包含数据,评估和培训脚本。 引文: @inproceedings{DBLP:journals/corr/abs-2004-14166, author = {Xingyi Cheng and Weidi Xu and Kunlong Chen and Shaohua Jiang and Feng Wang and Taifeng Wang and Wei Chu and Yuan Qi}, title={SpellGCN: Incorporating Phonological an
2023-02-10 15:57:57 4.19MB Python
1
图神经网络(Graph Neural Network,GNN)GCN/GAT/Graphsage
2022-12-28 14:27:43 953KB 图神经网络 GCN GAT
1
这是关于 图卷积GCN模型学习的资料,欢迎下载学习。
2022-12-28 10:26:57 923KB 人工智能 图神经网络 图卷积 GCN
1
SZ-taxi。该数据集由深圳2015年1月1日至1月31日的出租车轨迹数据组成,本文选取罗湖区156条主要道路作为研究区域。实验数据主要包括两部分。一个是156*156的邻接矩阵,它描述了道路之间的空间关系。每一行表示一条道路,矩阵中的值表示道路之间的连接性。另一个是特征矩阵,它描述了每条道路上的速度随时间的变化。每一行代表一条路,每一列是不同时段道路上的交通速度。每15分钟计算一次每条路上的车速。GNN-LSTM GCN GNN LSTM RNN
2022-12-21 11:27:21 2.03MB 深度学习 LSTM 图神经网络 智能交通
1
PART ONE/为什么需要图神经网络 PART TWO/什么是图神经网络(包括图的基本知识,及基本GNN的操作) PART THREE/图神经网络的变体(图神经网络的3个变体,图卷积神经网络(又可分为基于空间域的图卷积神经网络和基于频域的图卷积神经网络),基于注意力的图神经网络,基于自编码器的图神经网络)。包括DCNN(Diffusion-Convolution Neural Network、NN4G(Neural Networks for Graph)、MPNN:Message Passing Neural Network、GAT (Graph Attention Network)、图自编码器(graph autoencoder,GAE)、变分图自编码器(variational graph autoencoder,VGAE) PART FOUR/应用,在自然语言处理方面的应用,在计算机视觉方面的应用,在推荐系统方面的应用,在预测问题方面的应用
2022-12-19 16:28:05 12.69MB 图神经网络 GNN DCNN GAE
1
图模型中数据预处理所用的脚本, 包括dgl,gcn,gat都是用的这个预处理过程。
2022-12-06 17:26:30 7KB 图模型 gcn gat 预处理
1
图卷积网络 | PyTorch实现图卷积网络(GCN、GAT、Chebnet)的交通流量预测 > 交通流量预测。图卷积网络(GCN、GAT、Chebnet)的实现 用PyTorch实现 > > 要求 > > - Pytorch > > - Numpy > > - Pandas > > - Matplotlib > > 数据集实例: > > 这些数据集由加州交通局性能测量系统(PEMS-04)收集。 > > 数量:307个检测器 > 特点:流量、占用、速度。 > > 探测数据分析。 > > 1.有三个特征:流量、占有率和速度。首先,我们对数据分布进行可视化分析 > > 2.运行代码:python data_view.py > > 3.每个节点(检测器)都有三个特征,但两个特征的数据分布基本上是静止的,所以我们只取第一维特征。 > > 读取数据集。 > > 在traffic_dataset.py文件中,get_adjacent_matrix和get_flow_data函数是用来读取相邻矩阵和流量数据。 > > 模型训练。 > > 在traffic_predi
2022-11-21 15:26:58 39.65MB 图卷积网络 交通流量预测 GCN GAT
1