这是一个关于DEAP的详细使用方法,是许多使用DEA方法研究问题非常普遍的软件。
2022-01-10 21:40:08 3KB deap 方法
1
根据PSD(功率谱密度)和DWT(离散小波变换)两种特征,根据唤醒和效价(高/低)对脑电评分进行情绪识别分类。 运行process.m文件可以获取功率谱密度文本文件。 生成的每个测试文件都包含α、β、δ和θ波功率谱密度比(通过总psd标准化),分别为效价、唤醒和组合输出。运行dwt_feature_extraction.m生成DWT分析波的测试文件。它由3个特征组成:小波能量、小波熵和标准差,以及arousla和valce的评级。文件夹“psd analysis knn and svm”和“dwt analysis”已经包含处理过的文本文件和python代码,用于从这些测试文件中获取训练数据并进行分类。使用KNN和SVM运行ipynb文件进行分类。
2022-01-03 09:13:04 3.49MB matlab 脑电情绪识别 深度学习
使用 DEAP 数据集从脑电图信号进行情绪识别,准确率为 86.4%。应用了多种机器学习模型,并实现了DWT算法等各种信号转换算法。 并对数据进行了归一化、离散小波变换、划分频段、提取频域特征等等处理。
主要是想对DEAP脑电数据集进行单纯的频域特征分析,详情见个人主页的介绍
2022-01-02 19:09:01 4.48MB DEAP 脑电情绪识别 频域特征
脑电情绪识别的二分类算法,数据用的deap数据集。 代码主要分为三部分:快速傅里叶变换处理(fft)、数据预处理、以及各个模型处理。 采用的模型包括:决策树、SVM、KNN三个模型(模型采用的比较简单,可以直接调用库,很适合我这种新手,看起来也方便)。
DEA计算工具,对DEA进行计算。使用前在.ini文件中对模型进行配置,配置方法已经附在文件夹内的TXT文档里了,可以随时察看。
2021-12-25 14:49:54 191KB DEA DEAP2.1
1
Deap 2.1软件的具体操作和结果分析
2021-12-15 13:59:22 10.6MB Deap 2.1软件
1
FeatureSelectionGA 使用遗传算法(DEAP框架)进行特征选择 数据科学家发现,很难选择合适的功能来获得最大的准确性,尤其是当您要处理很多功能时。 有多种选择正确功能的方法。 但是,如果特征空间真的很大,我们将不得不为之奋斗。 遗传算法是一种从其他特征中搜索最佳特征集之一以获得高精度的解决方案。 安装: $ pip install feature-selection-ga 说明文件: 用法: from sklearn . datasets import make_classification from sklearn import linear_model from feature_selection_ga import FeatureSelectionGA , FitnessFunction X , y = make_classification ( n_samp
1
基于deap数据集,采用了卷积神经网络(CNN)和长短期记忆神经网络等四种模型进行对比,并结合pyeeg进行特征提取,最终准确率达到了90
基于DEAP数据集的特征提取———近似熵、排列熵、样本熵, 包含上述三个方法的python代码实现,全部在Jupyter Notebook上实现的
2021-11-18 09:07:22 283KB deap 脑电情绪识别 脑电特征提取 python