利用BP神经网络优化PID控制器参数,实现在线整定,达到最优化。
1
pso.m是主程序,pso-pid是适应值函数, 粒子群优化PID 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization)。思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为。 粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,每个粒子有两个属性:位置和速度; 每个粒子在搜索空间中单独的搜寻最优解,通过适应度函数确定适应值来评价当前位置的好坏,并记录最优解。
2024-05-21 16:44:35 250KB
1
GA-BP VS BP-遗传算法在哪优化了BP神经网络?附实验数据和代码
2024-05-21 16:31:41 16KB 神经网络 遗传算法
1
基于MATLAB编程,用长短期神经网络LSTM进行碳排放量预测,碳排放是一种时间序列的数据,用LSTM比一般神经网络更适合,代码完整,包含数据,有注释,方便扩展应用 1,如有疑问,不会运行,可以私信, 2,需要创新,或者修改可以扫描二维码联系博主, 3,本科及本科以上可以下载应用或者扩展, 4,内容不完全匹配要求或需求,可以联系博主扩展。
2024-05-21 15:23:06 1.17MB 神经网络 GUI
1
运用LOGWARE4.0软件中的“COG”模块对仓库选址进 行精确重心法求解。实验结果如图2所示。实验表明,从25 次迭代以后,运算结果保持不变。因此 ,该仓库的地址为 = 6.298,Y=6.484,运输成本为55 015 057.44美元。 图2 运用精确重心法求解仓库选址问题的结果 4.1.3 粒子群算法求解实例结果 采 用 MATLAB7进 行 算 法 编 程 ,在 Intel Core2 Duo CPU T7100 1.80 GHz的计算机上进行计算。经过多次实验, 最终确定粒子群算法的各项参数 :种群规模 m=25,惯性权重 CO=0.2,学习因子 c,=c,=1.5,迭代次数 gmax=30。 经过一次计算机实验 ,得到的初始种群如图3所示,经过 3O次迭代,种群的平均适应度和最优适应度的变化情况如图4
2024-05-21 13:17:44 245KB 粒子群算法 物流中心选址
1
基于BP神经网络回归预测,多变量输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-17 18:48:38 67KB 神经网络
1
「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf
2024-05-17 14:43:42 240KB
classification_BPNeuralNetwork 本文介绍了通过Python实现BP神经网络分类算法,对不同半径的圆进行多分类(3分类),特征即为圆的半径。 输入层12节点,一个6节点的隐藏层,输出层3个节点。 1.目标 通过BP算法实现对不同半径的圆的分类。 2.开发环境 IDE:PyCharm 2018.3.3(Community Edition) Python及相关库的版本号如下图所示: 3.准备数据 目的: 生成3类圆在第一象限内的坐标(圆心都是原点) 第1类:半径范围为110,分类标识为‘0’ 第2类:半径范围为1020,分类标识为‘1’ 第3类:半径范围为20~30,分类标识为‘2’ 代码如下:data_generate.py import numpy as np import math import random import csv # 只生成第一象限内的坐标即
2024-05-13 21:00:26 494KB 附件源码 文章源码
1
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:49 41KB 神经网络 lstm
1
基于粒子群算法优化长短期记忆网络(PSO-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:35 26KB 网络 网络 matlab lstm
1