matlab实现基于特征匹配的英文印刷字符识别.
2022-06-19 17:05:33 260KB matlab 图像处理 深度学习
1
由于之前收集的SIFT代码和文章过大(50多M),不能一起上传,这附件里面只包括SIFT的C/C++实现(可用),需要的请下载。
2022-06-16 21:58:14 9.35MB SIFT Feature 特征,匹配,C/C++
1
分别用SIFT、SURF、ORB做特征匹配要求用绿色线条画出两张图对应的匹配点(出3张图) 再使用RANSAC滤除离群点(参数自行调优)后用绿色线条画出两张图对应的匹配点(出3张图) 然后根据对应点分别计算图B到图A的单应变换矩阵(要求以矩阵形式清晰打印出来并截图,精度保留3位有效数字,出3张图) 根据计算的单应矩阵把第二张图变换到第一张图的坐标系下,与原图通过线性加权的方式融合(权重自行调优),可调用现成库,出3张图。
2022-06-08 19:12:09 767KB matlab 图像匹配 图像拼接
1
今天小编就为大家分享一篇opencv3/C++ FLANN特征匹配方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-05-15 15:47:42 147KB opencv3 FLANN 特征匹配
1
基于sift特征匹配的交通标志识别系统 (1)在复杂背景下的交通信号分割研究中,通过在HSV颜色空间中选择合适的阈值范围,提取出可能出现目标的区域。最后,根据形状学特征在最大的预留区域再次搜索三角形,圆圈提取目标区域。在此基础上,对大量交通标志进行了图像分割实验。经验表明,HSV彩色区域的交通标志分割效果更好。 (2)选择SIFT特征,即满足旋转、平移和比例不变要求的特征向量。提出了分割图像的想法。将图像分割成固定数量的子块,计算每个子块内SIFT向量的平均值,得到该图像的特征向量。整个设计带有一个可视化GUI界面,方便操作,布局合理。
2022-05-15 12:04:55 1.01MB 文档资料 matlab 人工智能 深度学习
VC++ 指纹识别系统的源代码,一个学士学位的毕业设计。 内容简介: 由于指纹所具有的唯一性和不变性,以及指纹识别技术具有很高的可行性和实用性,指纹识别成为目前最流行、最可靠的个人身份认证技术之一。 本论文对指纹图像基于小波变换的各种处理进行了分析、总结。图像处理包括基于小波变换的指纹图像滤波处理和基于小波的指纹图像增强处理。同时介绍指纹图像的预处理:目的是去除指纹图像中的噪音,将其转化为一幅清晰的点线图,便于提取正确的指纹特征。它分四步进行,即灰度滤波、二值化、二值去噪、细化。 本文针对基于点模式匹配的指纹匹配算法速度较慢的现状,设计了一种新的指纹匹配方法,即利用纹线匹配技术来寻找基准点对的指纹匹配算法.实验证明,该算法匹配速度很快,误识率低,准确性高,并具有图象旋转平移不变性.对面积适中的指纹图象,匹配结果可以满足在线应用的需要.该算法有望发展成为一种实用、有效的指纹匹配技术.
1
matlab实现的基于颜色直方图的特征匹配,RGB转换成hsv, 量化颜色,计算两幅图像特征向量之间的距离,实现颜色特征匹配。同时,二值化之后,计算zernike矩和hu不变矩,可以作为第二个特征匹配量。
2022-05-11 15:21:55 46KB matlab 颜色 特征匹配 zernike矩
1
三维坐标点的SIFT特征匹配。产生2个三维模型的坐标点,然后进行SIFT特征提取,然后进行配准
2022-05-02 09:08:29 3.99MB 源码软件 三维sift配准
针对现有图像复制粘贴篡改检测算法计算复杂度过高的问题,提出了一种基于分组尺度不变特征变换的图像复制粘贴篡改快速检测算法。首先,利用简单线性迭代聚类将输入图像分割成非重叠且不规则的块;然后,根据图像块内结构张量属性将其分为平坦块、边缘块和角点块,提取图像块内的SIFT特征点作为块特征;最后,通过块特征的类间匹配定位篡改区域。所提算法通过图像块分类和类间匹配,在保证检测效果的同时,有效地降低了特征匹配定位篡改区域阶段的时间复杂度。实验结果表明,所提算法检测准确率为97.79%,召回率为90.34%, F值为93.59%;图像尺寸为1 024像素×768像素时算法时间复杂度为12.72 s,图像尺寸为3 000像素×2 000像素时算法时间复杂度为639.93 s。与已有的复制粘贴算法相比,所提算法能够快速精准地定位篡改区域,且具有较好的稳健性。
1
使用MATLAB完成基于SIFT以及HARRIS和NCC算法的图像特征匹配,代码可以完整运行
2022-04-06 02:24:14 1.56MB matlab 算法 开发语言
1