MB459B运动控制评价板内容详解及电路图
2023-08-30 14:27:55 421KB
1
树莓派4B 视觉智能小车循迹 PID控制完整代码
1
STM32H7 运动控制源码,通过双DMA实现脉冲输出8个轴插补能达到500k 3轴可达1M的输出频率,并且带加减速控制。
2023-08-27 23:03:10 120KB stm32 软件/插件
1
一种基于Proteus仿真实现的上位机对下位机控制对象—步进电机的控制。上位机软件由VB开发,下位机由Proteus设计并进行仿真,期间还要采用虚拟串口(VSPD),用于模拟一根串口通信线,实现上位机与下位机的串口通信,最终实现上位机(VB)对下位机(Proteus)中步进电机的实时控制。为相关方面PC机控制步进电机的学习开发、实际应用,提供一种有效可行的仿真方法。
2023-07-10 18:51:11 310KB 运动伺服
1
GUS四轴嵌入式多轴运动控制器,GUS Controller 系列运动控制器,是将PC 技术与运动控制技术相结合的产物。它以X86 架构 的CPU 和芯片组为系统处理器,采用高性能DSP 和FPGA 作为运动控制协处理器。在延续了固高 科技运动控制器可以实现高性能多轴协调运动控制和高速点位运动控制的同时,实现普通PC 机的 所有基本功能,是客户理想的嵌入式一体化解决方案。
2023-06-24 07:28:36 13.15MB 12
1
好书-PLC运动控制技术应用设计与实践(西门子),不错的书籍
2023-06-06 11:35:06 16.78MB PLC
1
基于CAN总线的运动控制系统,林涛,周伟,CAN总线,作为一种技术先进、可靠性高、功能完善、成本合理的远程网络通讯控制方式,被广泛应用到各种控制领域中。本课题结合CAN总
2023-05-27 14:07:05 193KB CAN总线
1
为了降低研发成本,减轻微控制器的压力,提高系统的稳定性和灵活性,提出了一种基于专用控制芯片的步进电机运动控制系统设计方案。该运动控制系统中主要采用了微控制器AT90CAN128、步进电机驱动芯片TMC262和步进电机运动控制芯片TMC429。一旦初始化,系统可同时控制3个两相步进电机,并且可自主完成各种实时关键任务。测试结果表明所设计的控制系统具有数据传输稳定、性价比高、易于控制等优点,达到了预期的设计效果和要求。
2023-05-12 17:14:43 741KB TMC262; TMC429; 单片机; 步进电机;
1
第6章 运动模式 108 © 2015 固高科技 版权所有 &segment, // 读取当前已经完成的插补段数 0); // 查询坐标系的FIFO0缓存区 // 坐标系在运动, 查询到的run的值为 }while(run == 1); …… …… …… (3) 圆弧插补 GTC 运动控制器的插补模式支持在 XY 平面、YZ 平面和 ZX 平面的圆弧插补。其中圆弧插补的 旋转方向按照右手螺旋定则定义为:从坐标平面的“上方”(即垂直于坐标平面的第三个轴的正方向) 看,来确定逆时针方向和顺时针方向。可以这样简单记忆:将右手拇指前伸,其余四指握拳,拇指 指向第三个轴的正方向,其余四指的方向即为逆时针方向。映射坐标系为二维坐标系(X-Y)时,XOY 坐标平面内的圆弧插补逆时针方向同样定义,如图 6-26 示。 图 6-26 圆弧插补逆时针方向 圆弧插补有两种描述方法:半径描述方法和圆心坐标描述方法,用户可以根据加工数据选择合 适的描述方法来编程。所使用的描述方法遵循 G 代码的编程标准。 a) 半径描述方法 调用指令 GT_ArcXYR、GT_ArcYZR、GT_ArcZXR 是使用半径描述方法对圆弧进行描述。使 用半径描述方法,用户需要输入圆弧终点坐标、圆弧半径、圆弧的旋转方向、速度和加速度等。其 中参数半径可为正值,也可为负值,其绝对值为圆弧的半径,正值表示圆弧的旋转角度≤180°,负值 表示圆弧的旋转角度>180°,如图 6-27 所示,半径描述方法无法描述 360°的整圆。 Radius<0 Radius>0 起点 终点 图 6-27 半径取正值/负值圆弧插补示意图
2023-05-11 17:41:19 4.45MB 固高 编程手册 运动控制器
1
基于单片机c语言的悬挂运动控制系统,用at89c51和l298、步进电机等控制的,有显示器。
2023-04-20 15:36:12 432KB 单片机
1