此函数执行多目标粒子群优化 (MOPSO) 以最小化连续函数。 该实现是可以承受的,计算成本低,并且经过压缩(该算法只需要一个文件:MPSO.m)。 提供了一个“example.m”脚本以帮助用户使用该实现。 还值得一提的是,为了便于理解,对代码进行了高度注释。 此实现基于Coello等人的论文。 (2004),“使用粒子群优化处理多个目标”。 重要提示:您指定的目标函数必须是矢量化的。 这意味着它将采用整个种群(即矩阵 Np x nVar,其中 Np 是粒子数,nVar 是变量数)并且它期望接收每个粒子的适应度值(即,向量 Np × 1)。 如果函数没有被向量化并且只接收一个值,代码显然会引发错误。
2022-03-20 16:19:19 449KB matlab
1
粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便的计算机实现,在工程优化领域得到了广泛的应用
2022-03-09 21:10:06 12KB 智能算法 多目标粒子群 matlab代码
1
针对粒子群算法求解多目标问题极易收敛到伪Pareto 前沿(等价于单目标优化问题中的局部最优解), 并且 收敛速度较慢的问题, 提出一种?? 占优的自适应多目标粒子群算法(??DMOPSO). 在??DMOPSO算法中, 每个粒子的 邻居根据粒子的运行动态地组建, 且粒子的速度不由其邻居中运行最好的粒子来调整, 而是由其所有邻居共同调整. 同时, 采用外部存档保存非劣解, 并利用?? 占优更新非劣解. 模拟结果表明了??DMOPSO算法的有效性.
1
为进一步提高多目标粒子群算法的收敛性和多样性,提出一种多策略融合改进的多目标粒子群优化算法.首先,引入分解思想以增加Pareto解集的多样性;然后,在速度和位置更新时,引入“多点”变异,即随着迭代次数的递增,根据相应判据对位置的更新作出不同的变异,避免算法早熟现象的发生;最后,将更新后种群和最优解集进行非支配排序,最优解放入精英外部存档.仿真实验结果表明,与另外4种进化算法对比,所提出算法表现出良好的整体性能.
1
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.
1
使用matlab语言编程的粒子群算法对含分布式电源的配电网进行多目标优化
粒子群算法的Pareto多目标函数优化,多目标粒子群优化算法原理,matlab源码
2021-11-25 18:42:00 17KB
MOPSO源代码,双目标,无约束,相对简单,适合初学者学习用
2021-11-24 21:46:13 10KB matlab源代码 2目标
1