本实验以小型固定翼无人机 Aerosonde 为对象,通过动力学分析,建立了固定翼飞机非线性动力学模型,并利用 matlab/simulink 对所建模型进行了仿真。本实验选择的控制方法为 PID 控制,其物理意义明确,适用范围广。利用matlab/simulink 对设计的飞行控制系统进行仿真,可以看出,在 PID 控制下,飞机能有较好的飞行效果。
2024-08-22 10:47:40 1.07MB matlab
1
[免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧
2024-08-22 07:49:23 523KB python 数学建模 word
1
自由曲面匀光透镜被广泛应用于发光二极管(LED)照明中。传统的基于几何近似的自由曲面求解方法,由于存在建模误差,导致求解的面型不够精确,照明面均匀性下降。提出了一种误差分析及补偿方法,通过建立面型误差和出射角度误差之间的联系,结合光线追迹,实现了面型误差的准确量化和修正。采用该方法,针对1000 mm 工作距离,直径200 mm 照明范围的景观照明透镜进行了补偿设计,并用Lighttools 软件进行了仿真。结果表明:点光源模拟情况下,相对于传统几何近似求解方法,照明均匀性(最小照度/平均照度)由68.0%提升到98.5%;1 mm×1 mm尺寸LED 光源模拟情况下,在直径160 mm 的照明范围内,均匀性达到91.8%,具有良好的实用性。
2024-08-21 21:01:23 2.61MB 光学设计 自由曲面 均匀照明 优化设计
1
Python是一种强大的编程语言,尤其在数学建模领域中,它凭借其简洁的语法、丰富的库支持和高效的数据处理能力,成为许多科学家和工程师的首选工具。"Python数学建模算法与应用"是一门课程,旨在教授如何利用Python解决实际的数学问题,并进行模型构建和分析。课件和习题解答提供了学习者深入理解和实践这些概念的平台。 在Python数学建模中,主要涉及以下几个关键知识点: 1. **基础语法与数据类型**:Python的基础包括变量、条件语句、循环、函数等,以及各种数据类型如整型、浮点型、字符串、列表、元组、字典等。理解这些是进一步学习的基础。 2. **Numpy库**:Numpy是Python科学计算的核心库,提供高效的多维数组对象和矩阵运算功能。在数学建模中,数组和矩阵操作是常见的,Numpy简化了这些操作。 3. **Pandas库**:Pandas用于数据清洗、整理和分析,它的DataFrame结构非常适合处理表格数据。在建模过程中,数据预处理至关重要,Pandas能帮助我们处理缺失值、异常值和转换数据格式。 4. **Matplotlib和Seaborn**:这两个库主要用于数据可视化,它们可以绘制出各种图表,帮助我们理解数据分布、趋势和关系,对于模型的理解和验证十分关键。 5. **Scipy库**:Scipy包含了许多科学计算的工具,如优化、插值、统计、线性代数和积分等。在数学建模中,这些工具用于解决复杂的计算问题。 6. **Scikit-learn库**:Scikit-learn是机器学习库,提供了各种监督和无监督学习算法,如回归、分类、聚类等,对于预测和分类问题的建模非常实用。 7. **数据分析与模型选择**:在数学建模中,我们需要根据问题选择合适的模型,例如线性回归、逻辑回归、决策树、随机森林、支持向量机等,并通过交叉验证和网格搜索等方法优化模型参数。 8. **算法实现**:课程可能涵盖了各种数学模型的Python实现,如微分方程组的数值解法、最优化问题的求解算法(梯度下降、牛顿法等)。 9. **习题解答**:课后的习题解答部分将帮助学生巩固所学,通过实际操作来提升理解和应用能力。 10. **课件**:课件可能包含讲解、示例代码和案例分析,帮助学生系统地学习Python数学建模的全过程。 在"Python数学建模算法与应用"的课程中,学生不仅会学习到Python的基本语法和高级特性,还会接触到实际的数学建模问题,如预测、分类、最优化等问题的解决方案。通过kwan1117这个文件,学生可以查看课件内容,解答习题,进一步提升自己的技能。在实践中不断探索和掌握Python在数学建模中的应用,将有助于培养出解决实际问题的能力。
2024-08-21 10:14:34 81.18MB
1
2024亚太杯数学建模论文洪水的频率和严重程度与人口增长趋势相近。迅猛的人口增长,扩大耕地,围湖造田,乱砍滥伐等人为破坏不断地改变着地表状态,改变了汇流条件,加剧了洪灾程度。2023 年,全球洪水造成了数十亿美元的经济损失。因此构建与研究洪水事件预测发生模型显得尤为重要,本文基于机器学习回归,通过对比分析,构建了预测效果较好的洪水概率预测模型,为灾害防治起到一定贡献作用。 ### 2024亚太杯数学建模B题:基于机器学习回归的洪水预测模型研究 #### 一、研究背景及目的 随着全球人口的快速增长以及人类活动对自然环境的影响日益加剧,洪水的发生频率和严重程度也在逐年上升。据文中描述,2023年全球因洪水造成的经济损失高达数十亿美元。为了有效减轻洪水灾害带来的负面影响,构建一个能够准确预测洪水事件发生的模型变得至关重要。本研究旨在通过机器学习回归技术,构建并优化洪水预测模型,以期提高灾害预防和应对能力。 #### 二、研究方法概述 1. **相关性分析**:通过计算皮尔逊相关系数来评估各个指标与洪水发生之间的关系强度。此步骤帮助确定哪些因素对洪水发生的可能性有显著影响。 - **高相关性指标**:森林砍伐、滑坡、气候变化、人口得分、淤积、河流管理、地形排水、大坝质量和基础设施恶化。 - **低相关性指标**:季风强度、海岸脆弱性、侵蚀、排水系统、规划不足、城市化、流域、政策因素、无效防灾、农业实践、湿地损失。 2. **K聚类分析**:用于将洪水事件按照风险等级分为高中低三个类别,并通过CRITIC权重分析法确定每个指标的权重。随后,建立了有序逻辑回归模型,并通过准确率、召回率等指标对其性能进行了评估。 3. **模型对比与优化**:在问题三中,通过对问题二中建立的有序逻辑回归模型进行进一步分析,剔除了两个对结果贡献较小的指标,选择了五个关键指标(河流管理、气候变化、淤积、基础设施恶化、人口得分),构建了三种不同的模型(线性回归、梯度下降法线性回归、梯度提升树),并对这些模型进行了对比分析,最终选择了性能最优的梯度提升树模型。 4. **预测与验证**:利用问题三中选定的最佳模型对预测数据集进行洪水发生概率的预测,并通过S-W检验和K-S检验验证了预测结果的准确性。 #### 三、具体实施步骤 1. **问题一**:分析了各个指标与洪水发生的相关性,并绘制了热力图和柱状图以直观展示结果。 2. **问题二**: - 使用K聚类分析将洪水概率分为高中低三个等级。 - 应用CRITIC权重分析法计算各指标的权重。 - 基于上述结果构建了有序逻辑回归模型,并通过准确率、召回率等指标评估模型性能。 3. **问题三**: - 在问题二的基础上进一步优化模型,选择五个关键指标构建三种模型(线性回归、梯度下降法线性回归、梯度提升树)。 - 通过模型对比分析选择了梯度提升树作为最佳模型。 4. **问题四**:利用问题三中的最佳模型进行实际数据预测,并验证了预测结果的有效性和可靠性。 #### 四、结论与展望 通过上述研究,本文成功构建了一个基于机器学习回归的洪水预测模型。该模型不仅能够有效地预测洪水发生的概率,而且还可以为相关部门提供科学依据,以便采取更加有效的防灾减灾措施。未来的研究可以进一步探索更多影响洪水的因素,并尝试使用更先进的机器学习算法来提高预测精度。此外,还可以考虑将该模型应用于实际场景中,以评估其在真实世界中的应用效果。
2024-08-17 19:01:27 431KB 机器学习
1
### 2010高教社杯全国大学生数学建模竞赛优秀论文——储油罐的变位识别与罐容表标定模型 #### 概述 2010年高教社杯全国大学生数学建模竞赛是一场重要的学术竞赛活动,旨在通过解决实际问题来培养学生的创新能力和实践能力。本次竞赛的优秀论文《2010高教社杯全国大学生数学建模竞赛优秀论文——储油罐的变位识别与罐容表标定模型》由四川大学的朱名发、杨博和刘娜三位同学共同撰写。该论文主要探讨了储油罐在经历纵向倾斜和横向偏转后的变位识别与罐容表标定问题。 #### 知识点解析 ##### 储油罐的变位识别与罐容表标定 储油罐是用于存储燃油的重要设施,在长期使用过程中可能会因为地基变形等因素而发生变位。这种变位会导致罐容表发生变化,从而影响油位计量管理系统的准确性。因此,定期对罐容表进行重新标定是必要的。 ##### 数学模型建立 - **模型Ⅰ**:针对小椭圆型储油罐,研究罐体变位(纵向倾斜)后对罐容表的影响。通过选取特定的研究截面,利用切片积分法建立模型。模型首先考虑了罐体无变位的情况,然后分析了罐体倾斜角为α=4.1°的纵向变位情况。通过引入修正函数\[ V_g(h) = V_0(h) - \Delta V(h) \],其中\( V_0(h) \)为实验数值,\(\Delta V(h)\)为修正量,得到了精确的带修正优化的微分几何模型\[ V(h, \alpha) = f(h, \alpha) - g(h) \]。此模型可以准确地反映罐体变位对罐容表的影响,并能够给出合理的罐容表标定值。 - **模型Ⅱ**:针对实际储油罐(图1所示),研究罐体变位(纵向倾斜角度α和横向偏转角度β)后罐容表的标定问题。通过分析储油罐内部结构,选取特定研究截面,采用维数锐化技术,将三维问题简化为二维问题。由此建立的基本关系函数为\[ V(h, \alpha, \beta) \],并通过实际采集的数据确定了变位参数α=2.1°和β=4.6°,从而完成了罐容表的标定。 ##### 模型优化与验证 - **优化**:通过对模型进行修正优化,提高了模型的稳定性和适用性。 - **验证**:通过对比实验数据与模型预测结果,验证了模型的有效性和准确性。 #### 关键技术点 1. **微分几何模型**:利用微分几何理论,通过分析储油罐内部空间结构,建立数学模型,准确描述储油罐变位后油量与油位高度的关系。 2. **切片积分法**:通过选取特定的研究截面,将储油罐内部空间分为多个薄层,对每个薄层进行积分运算,得到罐内油量的表达式。 3. **维数锐化**:通过选取特定的研究截面,将复杂的三维问题简化为较简单的二维问题,降低了问题的复杂度,便于模型建立和求解。 4. **MATLAB编程**:利用MATLAB软件进行数据处理和模型求解,提高了计算效率和准确性。 #### 结论 本论文通过建立两个数学模型,有效地解决了储油罐变位识别与罐容表标定问题。模型Ⅰ适用于简单的小椭圆型储油罐,而模型Ⅱ则可以应对更为复杂的真实储油罐。通过实验数据验证,证明了模型的有效性和准确性。此外,通过模型优化,提高了模型的稳定性和适用范围。这一研究成果不仅对储油罐管理和维护具有重要意义,也为后续类似问题的解决提供了参考。
2024-08-16 11:18:46 902KB
1
2022全国大学生数学建模竞赛B题优秀论文
2024-08-15 09:43:48 2.99MB 数学建模
1
汉化内容全为本人亲自操刀翻译、校对。不存在侵犯版权行为。建议在正式注册版上使用。 资源分MAC和windows两部分。 1.MAC系统:替换Contents/Java文件下的astah-pro.jar文件。astah-gui_zh.properties也复制到这个目录下。 2.Windows系统:复制到安装目录下即可。其中astah-pro.jar替换原文件。 3.包中的两个插件文件可以复制到plugins目录下(Mac系统就在应用程序的目录中可见),两个插件均已汉化(不是必须的):一个是script导出;一个是数据库逆向。
2024-08-15 09:10:18 27.51MB uml macos
1
本文以某校园供水系统为研究对象, 当前校园供水系统是校园公共设施的重要组成部分,学校为保障校园供水的正常运行需要投入人力、物力以及财力。随着智能水表的普及,可以从中获取大量的实时供水的数据,后勤部门通过数据的分析,解决供水系统中存在的一些问题,提高校园服务和管理水平。 针对问题一,借助EXCEL软件的数据储存与图像功能,先把四个季度的数据导入EXCEL软件,然后绘制条形统计图(见附录1),统计和分析各个水表的变化规律;利用PANDAS软件把校园内的各个功能区进行划分,求各个功能区的用水情况,分析其用水特征,最后(见附录2)。 针对问题二,根据水表之间的关系模型,一级水表约等于一级水表下所以二级水表的和。利用EXCEL软件, 分析一级水表的用水总量与各个二级水表的用水总量做对比,同理二级水表与三级水表对比,以及三级水表与四级水表对比(见表4-1),经数据分析,得出有一部分数据异常,剔除异常数据(可能是水表损坏等原因)。 针对问题三,我们构建了小波神经网络模型,对于用水量数据进行了预测,我们发现预测结果与实际结果比较接近,可以用网络来判定是否存在损漏问题。
2024-08-14 16:57:50 86.96MB pandas 数据分析 神经网络 网络
1
2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf
2024-08-06 20:55:57 135KB 数学建模
1