十分钟发布预训练深度模型(VGG, ResNet, Densenet) web应用:基于Keras/Flask的图像分类Web App模板
2021-10-31 13:29:22 20KB Python开发-机器学习
1
前言 本文介绍的分类方式可能比较繁琐,因为它是采用华为云比赛的提交模式进行的。简洁的分类版本点击这里: 1.图像分类的更多tricks(注意力机制 keras,TensorFlow和pytorch 版本等): 2.大家如果对目标检测比赛比较感兴趣的话,可以看一下我这篇对目标检测比赛tricks的详细介绍: 3.目标检测比赛笔记: 增添内容 已修改成本地可以运行。 修改方法: 1.save_model.py|train.py|eval.py|run.py|中moxing.framework.file函数全部换成os.path和shutil.copy函数。因为python里面暂时没有moxing框架。 2.注释掉run.py文件里面的下面几行代码: # FLAGS.tmp = os.path.join(FLAGS.local_data_root, 'tmp/') # print(FLAGS.t
2021-10-30 22:32:37 136KB Python
1
matlab遥感分类代码CNN-AL-MRF 这就是《Hyperspectral Image Classification with Convolutional Neural Network and Active Learning》的代码。 如果您使用此代码,请在您的工作中引用以下论文。 [1] 曹向勇,姚敬,徐宗本,孟德宇。 具有卷积神经网络和主动学习的高光谱图像分类。 IEEE 地球科学与遥感学报,2020 年。() [2] H. Bi、F. Xu、Z. Wei、Y. Xue 和 Z. Xu,一种用于最小监督 polsar 图像分类的主动深度学习方法。 IEEE 地球科学与遥感学报,2019 年。 在 Windows 中安装 Matconvnet 请按照网站上的说明进行操作:。 再现结果 重现第四部分的实验结果。 D(1),请跑 matlab CNN_AL_MRF_main.m 接触: 如果您有任何问题,欢迎与我联系( / )。
2021-10-30 15:25:58 8.28MB 系统开源
1
立即学习:https://edu.csdn.net/course/play/26956/347465?utm_source=blogtoedu tensorflow 一般使用流程: 导入数据->定义模型->编译模型->模型训练->模型保存->模型预测 实现简单的分类模型 import tensorflow as tf inputs=tf.keras.Input(shape=[32,32,3]) '''卷积模块''' x=tf.keras.layers.Conv2D(10,kernel_size=[3,3],strides=[1,1],padding='SAME',activation='re
2021-10-30 12:10:53 30KB ens keras low
1
文章目录TensorFlow2 学习——图像分类导包原始数据数据作图数据划分与标准化构建模型并训练模型评估与预测其他:回调Callback的使用 TensorFlow2 学习——图像分类 导包 import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split 原始数据
2021-10-29 22:41:14 110KB ens low ns
1
在进行遥感图像多分类识别时, 针对使用传统方法遇到的分类模型特征提取困难、分类精度不理想、分类种类少等问题, 研究了卷积神经网络(CNN)模型在高光谱遥感地物多分类识别中的可行性及不同CNN 模型对高光谱遥感地物多分类的识别效果。从ISPRS(International Society for Photogrammetry and Remote Sensing)提供的Vaihingen及Google Earth中采集数据,制作了包含6类地物的数据集一。在此基础上增加10类地物制作数据集二, 再增14类地物制作数据集三。在预处理图像数据之后, 通过设置神经网络结构、调整模型参数、对比神经网络模型等, 上述3类数据集的地物分类识别率均达到95%以上。通过分析不同CNN模型对高光谱遥感地物多分类识别效果的影响, 证实了CNN模型在高光谱遥感地物多分类识别应用的可行性且具有较高的识别率。实验结果为CNN模型在高光谱遥感地物多分类识别中的应用提供了一定的参考。
2021-10-29 19:43:27 6.62MB 遥感 高光谱图 图像分类 卷积神经
1
MobileNetv2 是一个预训练模型,已经在 ImageNet 数据库的一个子集上进行了训练。 该模型接受了超过一百万张图像的训练,可以将图像分类为1000个对象类别(例如键盘,鼠标,铅笔和许多动物)。 从您的操作系统或 MATLAB 中打开 mobilenetv2.mlpkginstall 文件将启动您拥有的版本的安装过程。 此 mlpkginstall 文件适用于 R2019a 及更高版本。 用法示例: % 访问训练好的模型net = mobilenetv2(); % 查看架构细节网络层 % 读取图像进行分类I = imread('peppers.png'); % 调整图片大小sz = net.Layers(1).InputSize I = I(1:sz(1),1:sz(2),1:sz(3)); % 使用 mobilenetv2 对图像进行分类标签 = 分类(净,我
2021-10-28 13:48:56 6KB matlab
1
深度学习中图像分类案列的数据集,通过网络爬虫而得,内容:包含1036张水果图片,共5个类别(苹果288张、香蕉275张、葡萄216张、橙子276张、梨251张)
2021-10-28 13:23:51 14.04MB 数据建模 python 深度学习 图像分类
1
[英语] 该演示展示了如何实现 ZCA 白化以输入到卷积神经网络 (CNN)。 其解释请参考补充文件。 CNN 的输入层可以自动对图像进行归一化通过指定“ zscore”。 但是到2020a还没有实现ZCA白化,这个脚本最后定义了ZCA函数作为辅助函数。 [日本人]在这个演示中,ZCA 白化作为深度学习分类的预处理。 ZCA美白请参考参考资料。如果在定义图像输入层时指定'zscore',则可以自动进行预处理。但是,尽管您可以使用均值、标准偏差等进行“逐像素”预处理,但考虑到“像素间”信息的 ZCA 认识到,在 2020a 中,无法在“”内指定名称。 ZCA美白可以非常有效[4],取决于数据和网络等许多条件,它可能对提高准确性的贡献不大。 [参考] [1] Matlab 答案:如何将 PCA 应用于图像以通过示例降低其维数? https://jp.mathworks.com/matlab
2021-10-26 15:16:54 2.74MB matlab
1
针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法。首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充。然后,对轻量级图像分类网络MobileNetV3进行改进。最后,在扩充后的数据集上训练,实现了带钢缺陷的分类。实验结果表明,改进的生成对抗网络可生成比较真实的带钢缺陷图像,同时解决深度学习中样本不足的问题;且改进的MobileNetV3参数量是原有参数量的1/14左右,准确率为94.67%,比改进前提高了2.62个百分点,可在工业现场对带钢缺陷进行实时准确的分类。
2021-10-26 14:01:13 2.71MB 图像处理 缺陷检测 图像分类 生成对抗
1