基于卷积神经网络的高光谱遥感地物多分类识别

上传者: 38737213 | 上传时间: 2021-10-29 19:43:27 | 文件大小: 6.62MB | 文件类型: -
在进行遥感图像多分类识别时, 针对使用传统方法遇到的分类模型特征提取困难、分类精度不理想、分类种类少等问题, 研究了卷积神经网络(CNN)模型在高光谱遥感地物多分类识别中的可行性及不同CNN 模型对高光谱遥感地物多分类的识别效果。从ISPRS(International Society for Photogrammetry and Remote Sensing)提供的Vaihingen及Google Earth中采集数据,制作了包含6类地物的数据集一。在此基础上增加10类地物制作数据集二, 再增14类地物制作数据集三。在预处理图像数据之后, 通过设置神经网络结构、调整模型参数、对比神经网络模型等, 上述3类数据集的地物分类识别率均达到95%以上。通过分析不同CNN模型对高光谱遥感地物多分类识别效果的影响, 证实了CNN模型在高光谱遥感地物多分类识别应用的可行性且具有较高的识别率。实验结果为CNN模型在高光谱遥感地物多分类识别中的应用提供了一定的参考。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明