路径计算 PathCompute是在OpenDaylight(ODL)之上开发的,用于基于Link-State数据库中的信息表示UI中的拓扑。 它可用于为RSVP-TE计算基于约束的LSP,并将这些隧道推入路径计算客户端。 它还公开了用于计算src和dest之间的IGP路径的REST API。 先决条件: 该应用是使用python开发的,需要以下其他软件包才能正常工作。 apt-get install python-pip pip install flask requests ODL设置: 此存储库需要BGP,PCEP和RESTCONF的其他插件。 使用OpenDaylight 0.7.
2022-01-06 10:13:59 168KB topology graph bgp network
1
This book takes a pragmatic approach to deploying state-of-the-art optical networking equipment in metro-core and backbone networks. The book is oriented towards practical implementation of optical network design. Algorithms and methodologies related to routing, regeneration, wavelength assignment, sub rate-traffic grooming and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. The author has emphasized the economics of optical networking, with a full chapter of economic studies that offer guidelines as to when and how optical-bypass technology should be deployed. This new edition contains: new chapter on dynamic optical networking and a new chapter on flexible/elastic optical networks. Expanded coverage of new physical-layer technology (e.g., coherent detection) and its impact on network design and enhanced coverage of ROADM architectures and properties, including colorless, directionless, contentionless and gridless. Covers ‘hot’ topics, such as Software Defined Networking and energy efficiency, algorithmic advancements and techniques, especially in the area of impairment-aware routing and wavelength assignment. Provides more illustrative examples of concepts are provided, using three reference networks (the topology files for the networks are provided on a web site, for further studies by the reader). Also exercises have been added at the end of the chapters to enhance the book’s utility as a course textbook.
2022-01-05 21:09:26 14.03MB photonics ne
1
针对水质污染的环境综合监测问题,提出了一种基于卡尔曼滤波和卷积神经网络的水质异常监测方法。 该方法采用Mask R-CNN图像分割方法对鱼进行分割,制作出鱼骨干和背景图像的正样本数据集和负样本数据集,并利用卷积神经网络训练数据集获得模型。 在跟踪过程中,使用RANSAC算法筛选SIFT特征,使用匹配和卡尔曼滤波器跟踪鱼并实时绘制运动轨迹。 每3秒保存一次运动轨迹,总共获得150000个正常和异常水质样本。 实验结果表明,基于卡尔曼滤波和卷积神经网络的水质异常识别率为98.5%,优于传统的水质识别方法。
2022-01-05 20:51:52 1.62MB Calman filter;Convolution Neural Network;
1
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:57 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:57 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:56 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:56 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:55 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:55 105KB rpm
官方离线安装包,测试可用。使用rpm -ivh [rpm完整包名] 进行安装
2022-01-05 09:02:54 108KB rpm