需求预测 该项目的目的是为Kaggle竞赛开发一种解决方案,以预测不同商店中3个月的商品销售情况 比赛说明 提供此竞赛是在相对简单和干净的数据集上探索不同时间序列技术的一种方式。 系统会为您提供5年的商店商品销售数据,并要求您预测10家不同商店的50种不同商品的3个月销售。 处理季节性的最佳方法是什么? 应该对商店进行单独建模,还是可以将它们合并在一起? 梯度增强比ARIMA更好吗? 链接:
2023-04-15 15:07:49 4.81MB JupyterNotebook
1
一、因果的维纳预测器 图7-6就是维纳预测器的模型,N>0, 是希望得到的输出,而 表示实际的估计值。 图7-6维纳预测器 本节和上节一样着重讨论预测器的系统函数以及预 测的均方误差,维纳预测器和维纳滤波器比较类似, 因而分析方法也都可以借鉴前面的内容。
2023-04-15 13:43:07 1.08MB 维纳滤波器
1
单糖 这是以下论文的代码开发版本: Bugra Tekin,Sudipta N.Sinha和Pascal Fua,“实时无缝单发6D对象姿态预测”,CVPR 2018。 可以在以下找到上述文章的代码库的原始存储库。 介绍 我们提出了一种单发方法,可以同时检测RGB图像中的对象并预测其6D姿势,而无需多个阶段或必须检查多个假设。 我们方法的关键部分是受YOLO网络设计启发的新CNN架构,该架构可直接预测对象3D边界框的投影顶点的2D图像位置。 然后使用PnP算法估算对象的6D姿势。 , 引文 如果您使用此代码,请引用以下内容 @inproceedings {tekin18, TITLE = {{实时无缝单发6D对象姿态预测}},作者= {Tekin,Bugra和Sinha,Sudipta N.和Fua,Pascal}, BOOKTITLE = {CVPR}, 年= {2018} } 执照
2023-04-15 12:53:40 154KB Python
1
基于累积损伤的复合材料层合板拉-拉疲劳寿命预测,魏武国,,复合材料层合板在拉-拉疲劳载荷作用下的损伤形式主要是基体开裂、纤维拉断和分层,因此重点考虑这三种损伤的失效判据,并基于疲劳�
2023-04-15 09:08:01 331KB 首发论文
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2023-04-14 23:11:57 388KB lstm python 软件/插件
1
根据历史功率数据预测风电机功率,分别介绍了采用时间序列法 网络神经法 和灰度法三种方法
1
基于视频纹理特征的自适应模式决策算法在HEVC帧内预测中的应用
2023-04-14 12:36:59 459KB 研究论文
1
神经网络LSTM 时间预测MATLAB源码,RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多关于时间序列的问题却无能无力。
2023-04-14 10:23:45 13KB 神经网络 MATLAB源码 LSTM时间预测 RNN
GRU门控循环单元时间序列预测 包含以下.m功能文件 RNN_gate.m RNN_feedforward.m op_fc.m main.m batch_norm.m
2023-04-14 10:18:15 2KB GRU RNN 门控循环单元 MATLAB
车辆统计和车速预测 这里提供一个简单的基于vs2017+Opencv3.4的车辆统计和车速测量方法 效果图: 车辆统计 车速估计 说明 1、代码中RoI是固定的,可以设置鼠标响应事件设置RoI 2、背景建模后还有阴影影响车辆检测的准确度,可以设置算法进行背景消除 3、本来使用质心进行测速的,但是发现车辆在进出RoI的时候车辆质心随外接矩形进行变换,修改为车辆进入窄带的第一个点(这里使用右下角)替代质心提高准确度 4、没有进行标定,速度估计单位为pixels/s
2023-04-13 22:21:20 11.47MB 附件源码 文章源码
1