LSTM官方例程的电影评论数据集 imdb.pkl
2022-01-19 22:20:11 31.67MB LSTM 数据集 imdb.pkl
1
LSTM/CNN网络实现新闻文本分类Jupter源代码,下载后可以在Jupter下直接运行。 包括词向量表,单词词典,jupter源代码
2022-01-19 16:38:39 30.73MB LSTM CNN 文本分类 Jupter
1
数据融合matlab代码基准模型 这是使用卡尔曼滤波器进行基线生产的代码。 它是在以下模型中实现的模型的实现: 要使用此代码: 设置参数,数据集路径settings.yaml(Bicycle模型可能显示训练不稳定,欢迎提供帮助。) 运行train_kalman_predict.py开始训练。 在settings.yaml的load_name字段中输入经过训练的模型的名称(应采用 _ _ 的形式) 运行plot_results.py以绘制轨迹样本,估计的位置和预测 运行save_results.py以保存在测试集上计算出的预测结果 运行stats_results.py以打印度量标准评估,绘制协方差匹配和误差直方图(来自保存的结果) #数据集 NGSIM 在NGSIM网站上: 在以下位置注册 下载US-101-LosAngeles-CA.zip和I-80-Emeryville-CA.zip 将车辆轨迹数据解压缩并提取到raw / us-101和raw / i-80中 从googledrive: 下载i-80: 下载us-101: 数据集字段: do
2022-01-18 11:40:17 62KB 系统开源
1
三种网络对比
2022-01-17 22:47:30 599KB Python
注意LSTM 使用TensorFlow对LSTM实施注意力模型
2022-01-17 15:14:25 7KB Python
1
基于LSTM的期货微观市场的趋势预测模型,袁祥枫,代根兴,本文介绍了期货市场的微观结构与LSTM算法的工作原理,并尝试将LSTM应用在期货tick数据上,提出了一个基于LSTM的期货tick数据短期趋势分�
2022-01-16 10:22:08 436KB 首发论文
1
基于LSTM的股票预测tensorflows代码,通俗易懂,亲测有效
2022-01-15 14:52:34 299KB lstm 预测
1
股票买卖最佳时机leetcode 项目前提 该项目探索了使用监督式机器学习模型以基本面和技术分析数据作为输入可以预测未来股票价格的程度。 该项目旨在确定哪种监督机器学习模型,从时间序列多线性回归 (TS-MLR)、循环神经网络 (RNN) 到长短期记忆 (LSTM),可以以最低的根预测未来股票价格均方误差 (RMSE)。 在这样做的过程中,我们进行了降维和特征选择,深入了解了对预测未来股票价格特别重要的基本面和技术分析数据的类别。 这种洞察力可以整合到选股策略中,并为买卖股票的理想时机提供基准。 该项目将 LSTM 列为表现最佳的机器学习模型,预测未来一个月收盘价的平均 RMSE 为 8.03,预测未来六个月收盘价的平均 RMSE 为 13.45。 动机 投资股票市场往往是最不稳定的投资类型。 因此,我们的项目探索了最小化此类波动的方法之一——分析公司数据以发现股票价格变化的可能趋势。 在此过程中,我们的项目希望这些趋势能够帮助提高投资者的确定性。 理想情况下,最好(最小 RMSE)模型将允许投资者从投资中获利并“击败市场”。 我们项目的意义有两个方面。 首先,它提供了对影响股票价格的
2022-01-13 19:44:05 55.59MB 系统开源
1
引文 文章: : 如果您发现此存储库对您的研究有用,请引用此工作: Martinsson, J., Schliep, A., Eliasson, B. et al. J Healthc Inform Res (2019). https://doi.org/10.1007/s41666-019-00059-y 先决条件 该代码旨在在OhioT1DM数据集上运行。 因此,要使用它(例如,示例实验YAML配置)中的xml_path需要指向XML数据文件所在的磁盘上的路径。 例如,更改“ / home / ubuntu / ohio_data / OhioT1DM-training /”以指向包含ohio数据集XML文件的Ohiot1DM-training文件夹。 当然可以编写一个新的数据集模块,该模块将数据加载为所需格式并在其他数据上训练模型。 安装 $> chmod +x setup
1
股票价格预测器:建立LSTM递归神经网络来预测股票市场价格
1