使用LSTM +CNN对EGG 进行分类预测,一维CNN提取数字信息特征,LSTM 进行分类预测
2022-01-08 21:30:53 2.49MB LSTM lstm分类 lstm预测 分类预测
道路交通事故是道路交通安全水平的具体体现,为使预测数据更科学地为交通管理系统提供决策。提出建立基于LSTM(Long Short-Term Memory)神经网络的交通事故模型,训练交通事故相关的数据,对交通安全水平的指标进行预测。经过与传统回归模型和传统神经网络模型进行实验对比,实验显示LSTM拟合效果最佳,另外LSTM模型对同一趋势上的预测效果有明显优势。通过使用LSTM模型捕获数据中存在的时序依赖关系,能够更准确地对交通事故安全水平进行预测,使交通管理部门制定更加科学准确的决策。
2022-01-07 23:13:43 995KB 论文研究
1
LSTM写唐诗。使用tensorflow框架。代码是可以正常运行的代码,包含数据集。
2022-01-07 01:05:45 5.58MB nlp 深度学习 自然语言处理
1
该项目有两部分: 1.预处理: 预处理脚本使用小波变换对EEG信号进行去噪,降低采样频率并将10分钟片段分成15个时间序列。项目的这部分是用MATLAB编写的。该脚本位于source/Preprocessing/Preprocess_data.m下。 2.CNN+LSTM:预处理完成后,将使用此数据训练CNN+LSTM模型。 架构如下图所示: source/DataGenerator.py脚本是一个自定义类,用于将数据批量加载到内存中,而不是一次加载整个数据集。有关该类的更多信息,请参阅脚本中的注释。
2022-01-06 18:07:17 86.76MB matlab python LSTM CNN
Kaggle语音识别 这是针对的Kaggle竞赛的项目,目的是为简单的语音命令构建语音检测器。 该模型是使用连接器时间分类(CTC)成本的卷积残差,向后LSTM网络,由TensorFlow编写。 首先将音频波文件转换为滤波器组频谱图。 CNN层从频谱图输入中提取分层特征,而LSTM层的作用类似于编码器/解码器,对CNN特征的序列进行编码,并输出字符作为输出。 LSTM编码器/解码器非常动态。 取决于训练词汇,可以用整个单词,音节或仅音素的信息对发出的字符进行编码。 完全连接的层会压缩表示形式,并进一步将字符与单词解耦。 该项目旨在调试和可视化友好。 提供这些界面以权重和激活,登录TensorBoard并记录示例单词的学习,这些示例单词显示了如何在训练中学习角色和决策边界。 安装和使用: 先决条件:Python 3.5,TensorFlow 1.4; 或Python 3.6,Tens
2022-01-06 13:45:16 1.93MB tensorflow kaggle lstm speech-recognition
1
matlab代码黄色MR脑组织分割 MR脑组织分割是生物医学图像处理中的重要问题。 目标是将图像分为三个组织,即白质(WM),灰质(GM)和脑脊髓液(CSF)。 我们使用具有多模态和邻接约束的LSTM方法进行脑图像分割。 我们从大脑图像生成特征序列,并将其输入经过训练的LSTM / BiLSTM模型中以获得语义标签。 该方法实现了有希望的分割结果以及对噪声的鲁棒性。 纸 谢凯,应雯。 LSTM-MA:一种具有多模态和邻接约束的LSTM方法,用于脑图像分割。 (提交给ICIP 2019) 代码 用于实现我们的方法的Matlab代码:LSTM-MA和BiLSTM-MA。 数据集 :包含正常脑的MRI模拟量,具有三种模式:T1,T2和PD。 :包含T1,T1反向恢复和FLAIR序列。 管道 我们建议的细分渠道的说明。 给定多模态切片的输入,遵循两个阶段以获得最终的分割结果。 首先是序列构建阶段,以两种方式生成特征序列,即逐像素约束和超逐像素约束。 其次是分类阶段,将特征序列分别输入LSTM或BiLSTM层,然后再输入完全连接的层和s​​oftmax层。 正常的大脑 在BrainWeb上的三个
2022-01-05 18:09:10 3.37MB 系统开源
1
台风是一种极端天气事件,每年夏天都会对沿海地区的城市经济造成重大损失。 预测台风的形成和强度以对台风灾害进行预警是非常重要的。 传统的基于流体理论的数值预报模型仍然很难准确地预测台风强度。 一些研究尝试使用机器倾斜方法来预测台风的形成和强度,但是他们并未考虑台风形成变量之间的时空关系。 在这里,我们提出了一个混合的CNNLSTM模型来学习大气和海洋变量的时空相关性。 我们的CNN-LSTM模型引入了3D卷积神经网络(3DCNN)和2D卷积神经网络(2DCNN),以了解台风形成特征之间的空间关系。 我们利用LSTM来学习台风路径中特征的时间序列关系。 在三个数据集上进行的广泛实验表明,我们的CNN-LSTM混合模型优于现有方法,包括许多官方组织使用的传统数值预测模型,统计预测方法和基于机器学习的方法。
2022-01-04 13:05:11 4.32MB 研究论文
1
基于paddle从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与paddle自带的LSTM进行了对比实验。
2021-12-31 19:03:42 8.64MB paddlepaddle LSTM 自定义实现LSTM 深度学习
使用torch搭建LSTM实现对羽毛球动作的实时训练并预测,本文将其分为数据集制作、数据处理、模型搭建以及可视化几个步骤
2021-12-31 09:12:04 388.84MB 姿态估计 动作预测生成 lstm
利用tensorflow实现的循环神经网络RNN(本程序使用了LSTM)来做语言模型,并输出其困惑度。 #语言模型主要是根据一段给定的文本来预测下一个词最有可能是什么。困惑度用于评价语言模型。困惑度越小,则模型的性能越好。
2021-12-30 20:33:21 12KB python RNN LSTM 语音识别
1