在电商产业链中,为提升用户物流服务体验,供应链协同将货品提前准备在全球各个市场的本地仓,可有效降低物流时间,极大提升用户体验。不同于国内电商物流情况,出海电商的产品生产和销售地区是全球化的,商品的采购,运输,海关质检等,整个商品准备链路需要更长的时间。在大数据和人工智能技术快速发展的新时代背景下,运用大数据分析和算法技术,精准预测远期的商品销售,为供应链提供数据基础。
供应链需求预测,对原问题做建模问题简化。考虑商品在制造,国际航运,海关清关,商品入仓的供应链过程,实际的产品准备时长不同。这里将问题简化,统一在45天内完成。该资源为利用最近1年多的商品数据预测45天后5周每周(week1~week5)的一个不同SKU的销量模型。
该资源为大数据或者机器学习领域中一个完整的时间序列的预测案例,感兴趣的朋友可尝试下载学习,对于在供应链、电商领域的做算法研究的朋友有比较大的帮助