深度学习用于元表面优化 使用深度学习以张量流/角点和约5600 Lumerical模拟作为训练数据来优化单元素超表面参数。 在垂直入射光下进行的模拟。 定义超表面的特征是1.长度(L)2.宽度(W)3.高度(H)4.x方向周期性(Ux)5. y方向周期性(Uy)。 输出是周围和整个可见光的相位光谱,增量为5 nm(450 nm-800 nm)。 对于PowerPoint,有动画,所以我建议在幻灯片放映模式下观看。 此仓库中发布的所有内容均已获得许可 我将在介绍这项工作。 背景 超表面用于多种应用以各种方式操纵光。 设计这些纳米结构的当前最先进的方法是相当中世纪的,并且依赖于蛮力策略。 也就是说,给定所需的输出,超颖表面参数的哪些组合可以为我们提供最接近所寻找值的值? 为了回答这个问题,研究人员依靠仿真软件并执行了数千次参数扫描,希望他们找到最佳的组合。 在时间和计算能力方面,仿真的成本
2022-04-26 16:25:24 56.79MB Python
1
Deep SORT 所需的 mars-small128系列文件。mars-small128.ckpt-68577;mars-small128.ckpt-68577.meta;mars-small128.pb;MOT16_POI_test;MOT16_POI_train 包括deep-sort中resource目录下的资源,弥补github缺失部分。
2022-04-25 18:16:18 179.36MB Deep SORT mars-small128 deep-sort
1
Deep convolutional neural networks (CNNs) have been at the heart of spectacular advances in deep learning.
2022-04-24 11:15:32 858KB Caffe
1
【《深度强化学习实战》随书代码】’Code from the Deep Reinforcement Learning in Action book from Manning, Inc'
2022-04-23 20:30:56 427KB 强化学习 Deep R 深度强化学习
1
Tensorflow 2 Keras的深度强化学习 注意:需要tensorflow == 2.1.0 它是什么? keras-rl2在Python中实现了一些最先进的深度强化学习算法,并与深度学习库无缝集成。 此外, keras-rl2可以与一起使用。 这意味着评估和使用不同算法很容易。 当然,您可以根据自己的需要扩展keras-rl2 。 您可以使用内置的Keras回调和指标或定义自己的指标。 更重要的是,只需扩展一些简单的抽象类,即可轻松实现自己的环境甚至算法。 文档可。 包含什么? 截止到今天,已经实现了以下算法: 深度Q学习(DQN) [1] , [2] Double DQN [3] 深度确定性策略梯度(DDPG) [4] 连续DQN(CDQN或NAF) [6] 交叉熵方法(CEM) [7] , [8] 决斗网络DQN(Dueling DQN) [9] 深层S
2022-04-23 11:05:32 898KB algorithms deep-reinforcement-learning deep dqn
1
Transformers 正在成为许多神经网络架构的核心部分,被广泛应用于诸如NLP、语音识别、时间序列和计算机视觉等领域。Transformers 经历了许多改编和改造,从而产生了新的技术和方法。《Transformers 机器学习:深度探究》是第一本全面介绍Transformers的书。
2022-04-21 22:06:01 17.37MB 机器学习 自然语言处理 神经网络 架构
【导读】注意力机制是深度学习核心的构建之一,注意力机制是深度学习核心的构件之一,来自Mohammed Hassanin等学者发表了《深度学习视觉注意力》综述论文,提供了50种注意力技巧的深入综述,并根据它们最突出的特征进行了分类。
2022-04-21 13:05:24 3.48MB 深度学习 分类 机器学习 人工智能
1
脑计算机接口的深度学习模型 该存储库包含可用于解码脑计算机接口(BCI)的EEG和EEG信号的深度学习模型。 一些模型依赖于gumpy提供的功能, gumpy是一个python工具箱,其中包含多个gumpy常用的信号和特征处理例程。 外部链接 gumpy : github上的gumpy: 不良学习的核心开发人员和贡献者 齐德·塔耶布(Zied Tayeb) Nicolai Waniek, 内拉·加布西(Nejla Ghaboosi) 尤里·费杰耶夫(Juri Fedjaev) 伦纳德·莱奇利(Leonard Rychly) 执照 该存储库中的所有代码均根据MIT许可证发布。 有关更多详细信息,请参见LICENSE文件。
2022-04-20 22:20:18 16KB Python
1
BA-Net:一种深度学习方法,可使用卫星图像的时间序列来绘制和绘制燃烧区域的日期 在过去的几十年中,用于烧伤区域的地图绘制和从遥感影像确定日期的方法一直是广泛研究的对象。 当前方法的局限性,以及对它们所需的输入数据的大量预处理,使其难以改进或应用于不同的卫星传感器。 在这里,我们探索基于每日多光谱图像序列的深度学习方法,这是一种有前途且灵活的技术,可应用于具有各种空间和光谱分辨率的观测。 我们使用从VIIRS 750 m波段重新采样到0.01º空间分辨率网格的输入数据测试了全球五个区域的建议模型。 派生的燃烧区域已针对更高分辨率的参考地图进行了验证,并与MCD64A1 Collection 6和FireCCI51全局燃烧区域数据集进行了比较。 我们显示,尽管使用的空间分辨率观测值低于两个全局数据集,但拟议的方法在燃烧区域测绘的任务中取得了竞争性的结果。 此外,与最先进的产品相比,我们改善
1