上传者: 42122878
|
上传时间: 2022-04-26 16:25:24
|
文件大小: 56.79MB
|
文件类型: ZIP
深度学习用于元表面优化
使用深度学习以张量流/角点和约5600 Lumerical模拟作为训练数据来优化单元素超表面参数。 在垂直入射光下进行的模拟。 定义超表面的特征是1.长度(L)2.宽度(W)3.高度(H)4.x方向周期性(Ux)5. y方向周期性(Uy)。 输出是周围和整个可见光的相位光谱,增量为5 nm(450 nm-800 nm)。
对于PowerPoint,有动画,所以我建议在幻灯片放映模式下观看。
此仓库中发布的所有内容均已获得许可
我将在介绍这项工作。
背景
超表面用于多种应用以各种方式操纵光。 设计这些纳米结构的当前最先进的方法是相当中世纪的,并且依赖于蛮力策略。 也就是说,给定所需的输出,超颖表面参数的哪些组合可以为我们提供最接近所寻找值的值? 为了回答这个问题,研究人员依靠仿真软件并执行了数千次参数扫描,希望他们找到最佳的组合。 在时间和计算能力方面,仿真的成本