Shallow Triple Stream Three-dimensional CNN
2022-05-10 16:03:54 707KB cnn 人工智能 神经网络 matlab
1D-CNN的模型、训练与预测。用于时间序列的一种信号处理。
2022-05-10 14:14:58 3KB 1D-CNN 1DCNN CNN CNN-
卷积神经网络过程可视化方面的论文,非常详细,香港科技大学最新研究成果
2022-05-10 10:32:47 15.06MB CNN 可视化 卷积神经网络 浙江大学CG
1
drcn matlab代码通过 CNN 架构和 TV-TV 最小化实现单图像超分辨率 介绍 复制论文中实验的Matlab代码: Marija Vella, João FC Mota BMVC 2019 该论文描述了任何超分辨率算法的后处理步骤,但这与基于 CNN 的算法特别相关。 给定低分辨率图像 b 和超分辨率算法的输出 w,后处理步骤通过求解 TV-TV 最小化来生成改进的高分辨率图像: 我们的实验表明,这个过程步骤系统地提高了重建图像的质量,如 PSNR 和 SSIM 所测量的那样,即使基本算法是最先进的,(例如, , , )。 要求 (针对 R2019a 进行测试) 内容 有 2 个主要文件夹:和 . 该文件夹包含三个子文件夹: - 来自数据集、 和 的地面实况图像; 这些用于测试。 - 我们考虑过的超分辨率方法的输出图像(、 和 )。 根据缩放因子将它们裁剪为适当的大小,以避免与地面实况图像错位。 - 包含两个带有示例图像的子文件夹,一个带有真实图像,另一个带有来自 SRCNN 的输出图像,放大系数为 2 倍。 该文件夹包含运行所有实验所需的代码。 脚本experiments
2022-05-09 21:38:17 261.97MB 系统开源
1
颜色分类leetcode CarL-CNN Car Logos CNN - 构建我自己的汽车标识分类神经网络 描述 CarL-CNN 接受了 20,778 张 50x50px RGB 图像的训练,这些图像描绘了 40 个不同汽车品牌的标识。 该数据集是从松散的网站上精心挑选的,包含各种配色方案(黑/白、RGB、CMYK、单色)、不同角度的图像、照片、绘图、草图,有时可能包含一些噪音(其他标识、背景等) .) 它通过归因于预测的品牌标签对给定图像进行分类: 模型指标 该模型得到以下分数: 精度:94.20% 召回率:94.03% F1分数:94.04% 准确度:94.03% 特征 Jupyter Notebook 文件包含用于展示、类别概率预测和新图像识别的方法定义。 此外,还对错误预测的案例进行了仔细检查,以分析哪些汽车品牌需要一些数据集丰富。 未来发展 我计划将它变成一个 Web 应用程序,并允许添加用户拥有的图像进行分类。 稍后,我打算使用sl4a,将其制作成Android应用程序并启用手机摄像头识别车标——真正的计算机视觉! 链接 - 完整运行 CarL-CNN 所需的链接 (解
2022-05-09 19:51:14 972KB 系统开源
1
卷积神经网络用于句子分类2014年论文的解读ppt,通过开题介绍卷积的概念,以及论文完成的工作突破性意义,以及论文中的模型构建
2022-05-09 17:02:23 716KB cnn
1
使用深度学习的多手写数字识别(TensorFlow-Keras) 要求 TensorFlow(Keras) 的Python 3.5 + Numpy(+ MKL适用于Windows) PIL(枕头) Opencv的 tkinter(python GUI) 关于项目 使用CNN(卷积神经网络)在MNIST数据集上训练模型 将模型另存为'mnist.h5'(train_digit_recognizer.py) 使用tkinter GUI制作画布并在其上写数字 使用PIL在画布上获取“手写数字”的副本,并以“ img_ {image_number} .png”的形式保存到“ / img”中 同样在OpenCV帮助下,通过识别轮廓,它可以处理多个数字 使用保存的模型'mnist.h5'从画布预测保存的手写数字图像 屏幕截图 绘图画布... 输出图像... 使用PIL-ImageGrab
2022-05-09 16:09:51 1.06MB opencv machine-learning keras pillow
1
使用CNN进行面部表情识别:使用CNN和Keras和Tensorflow创建的面部表情识别模型
2022-05-08 18:19:59 1.6MB python deep-learning tensorflow numpy
1
matlab灰色处理代码基于深度学习的投影梯度下降用于图像重建 该项目包括一个框架,以: 在Pytorch中训练神经网络(Unet)作为图像到图像投影仪,将其导出为.pth和.onnx格式 在[1]中应用松弛投影梯度下降(RPGD)进行图像重建。 对于这一部分,在Python和Matlab中都提供了代码。 在Matlab中,由于有许多库,测量操作员可能更容易获得。 %%% 入门 先决条件 Python 3.7 Pytorch 1.1.0 Scipy 1.2.1 Matplotlib 3.0.3 对于Matlab代码: Matlab R2019a深度学习工具箱 正在安装 下载文件夹代码和数据 运行测试 此处提供的干净数据(位于train_target和test_target文件夹中)包含200个训练图像,20个测试图像,每个图像都有1个通道,灰度像素为320x320。 每个图像都是从Matlab幻象函数生成的,参数是从修改后的Shepp-Logan头部幻像获得的参数E,然后通过使E = E + 0.01 * randn(10,6)来添加一些变化。 测量算子H是5x5卷积,权重= 1/25
2022-05-08 15:33:27 26.3MB 系统开源
1
猫和狗 当我们的数据集不足时,最常用的方法之一是使用预先训练的模型。 在我们的案例中,我们将考虑在ImageNet数据集上训练的大型卷积网络(140万个带标签的图像和1000个不同的类)。 ImageNet包含许多动物类别,包括不同种类的猫和狗,因此我们可以期望在猫与狗的分类问题上表现出色。 我们可以使用的一些主干: •Xception•InceptionV3•ResNet50•VGG16•VGG19•MobileNet 我将使用由Karen Simonyan和Andrew Zisserman在2014年开发的VGG16架构,该架构是ImageNet的一种简单且广泛使用的convnet架构。 VGG16: from keras.applications import VGG16 conv_base=VGG16(weights=('imagenet'),
1