CNN可以很好地识别数据中的简单模式,然后使用这些模式在更高的层中形成更复杂的模式。当您希望从整体数据集的较短(固定长度)片段中获得有趣的特征,且特征在片段中的位置相关性不高时,1D CNN非常有效。
这适用于传感器数据(如陀螺仪或加速度计数据)的时间序列分析。它还适用于分析固定长度周期内的任何类型的信号数据(如音频信号)。另一个应用程序是NLP(尽管在这里LSTM网络更有前途,因为单词的接近程度可能并不总是一个可训练模式的良好指示器)
博客地址:https://blog.csdn.net/weixin_38346042/article/details/121742025?spm=1001.2014.3001.5501