Fashion-MNIST是一个用来进行机器学习和深度学习的测试数据集,它由类似于MNIST的手写数字图像数据集演变而来,但是每一张图像都代表了10类服装类型之一,包括T恤、裤子、套衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包和靴子。 基于卷积神经网络的Fashion-MNIST图像识别,通常指的是使用卷积神经网络来对Fashion-MNIST数据集中的图像进行分类。在这种情况下,我们需要训练一个卷积神经网络模型,让它能够根据图像的特征来预测图像所属的类别。 为了实现这个目标,我们需要以下步骤: 1. 准备Fashion-MNIST数据集,包括训练集、验证集和测试集。 2. 构建一个卷积神经网络模型,包括两个卷积层和全连接层。 3. 使用训练集对模型进行训练,通过反向传播算法来更新模型参数。 4. 使用验证集对训练好的模型进行评估,并通过可视化工具来观察模型的训练曲线和验证曲线。
2023-03-29 13:56:56 150KB 机器学习
1
主要介绍了纯用NumPy实现神经网络的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
2023-03-29 10:00:49 791KB NumPy 神经网络 NumPy实现神经网络
1
针对Tiny YOLOv3算法在扶梯异常行为检测时存在高漏检率和低准确率的问题,提出一种改进的Tiny YOLOv3网络结构用于扶梯异常行为检测。利用K-means++算法对数据集中的目标边框进行聚类,根据聚类结果优化网络的先验框参数,使训练网络在异常行为检测方面具有一定的针对性。利用多层深度可分离卷积提取深层次的语义信息,加深特征提取的网络结构;增加一个尺度用于低层语义信息的融合,改进原有算法预测层的结构;使用GPU进行多尺度训练,得到最优的权重模型,对扶梯异常行为进行检测。实验结果表明,优化后的模型与Tiny YOLOv3相比,平均漏检率减小了22.8%,检测精度提高了3.4%,检测速度是YOLOv3的1.7倍,更好地兼顾了检测的精度和实时性。
2023-03-28 20:50:17 19.76MB 图像处理 异常行为 自动扶梯 深度可分
1
使用说明,参考:https://www.jianshu.com/p/8db0dd959897
2023-03-28 17:22:33 12KB CNN 深度学习 分类 爬虫
1
【BP预测】基于帝国企鹅算法优化BP神经网络实现数据预测附matlab代码
2023-03-28 15:05:44 837KB
1
手写字符的识别是任何模式识别问题中最重要的任务。 在本文中,我们讨论了一种使用神经网络和欧几里德距离度量来识别手写字符的方法。 首先神经网络经过一个学习阶段,然后网络被用来识别未知的手写字符。 对于不匹配的手写字符,使用欧氏距离度量来提高识别率。
2023-03-28 14:33:16 114KB character patterns neural
1
关于图像复原技术很全面的一篇文章,很多数字图像复原的研究都参考此文献
2023-03-28 09:56:48 3.36MB 图像复原技术 神经网络 小波分析
1
一种基于卷积神经网络的信号调制方式识别方法.pdf
2023-03-27 21:34:37 2.34MB
1
自驾车sp20 2020年Spring,在伯克利加州大学伯克利分校由机器学习教授的自动驾驶汽车贴花。 快速链接: 匿名反馈: : 每周结帐: : //forms.gle/9DfNj87bd9cFiSKh9 群组: : 广场: : Anaconda命令: : 第八周控制理论: 演讲幻灯片: : usp 缩放记录: : 熟悉带有航点的控制回路。 通过3维状态和2维动作实现PID。 探索迭代LQR并为我们的系统选择一个合适的二次成本。 确保您已经安装了diffopt pip install git+http://github.com/brandontrabucco/diffopt.git 看着: 滑梯 演示/周8 / PID_demo.ipynb 硬件/控制/control_loop.py 写进: hw / control / pid.py(
2023-03-27 16:22:54 24.48MB JupyterNotebook
1
基于matlab平台的:交通标志识别(选颜色定位,分割,bp神经网络方法识别,可模板,sift,svm等方法识别)
2023-03-27 12:47:29 1.37MB 交通标志识别 颜色定位
1