数字图像处理的人脸识别和去噪声等功能,有样图和结果图
2022-12-13 22:39:09 8.38MB 人脸识别 识别 数字图像处理
1
基于RKmedia的人脸和车牌识别的SDK及使用说明.7z 人脸检测&识别 对于人脸部分,SDK 提供了以下能力: 人脸检测 1.1 人脸是否带口罩判定 1.2 人脸角度检测 人脸识别 2.1 1:1 识别 2.2 1:N 识别 用户重识别 对于车牌部分,SDK 提供了以下能力: 车辆检测 车牌检测(蓝牌、绿牌、黄牌[含双层黄牌]、白牌、黑牌等) 车牌识别
2022-12-13 17:27:17 13.85MB rv1109 rv1126 RKmedia 车牌识别SDK
基于PCA和SVM的实时人脸识别: faceCapture:首先采集需要被识别人的人脸,每人采取10张,统一格式大小,放入人脸数据库中; ReadFace:读入训练的人脸数据; fastPCA:PCA降维; scaling:训练数据归一化; train:使用SVM支持向量机训练模型; imageAcquision: 读入人脸照片—>灰度化—>检测人脸—>扣出人脸—>归一化尺寸—>在训练集的特征子空间中降维—>在训练集每维的最大最小值上数据归一化—>利用训练好的模型预测—>显示
2022-12-13 13:26:07 14.7MB PCA SVM 人脸识别 Matlab完整程序和数据
基于计算机视觉和机器学习的人脸检测及人脸识别系统源码+数据资料.zip本项目是基于OpenCV2跨平台计算机视觉和机器学习软件库的人脸检测及人脸识别系统, 采用Web应用作为用户和管理的交互页面。 系统人脸识别模块的图像处理采用PIL(Python Image Library)。 BPL是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了 软件架构 Flask:Flask是一个使用 Python 编写的轻量级 Web 应用程序框架。 OpenCV2:OpenCV2是一个跨平台计算机视觉和机器学习软件库。 LayUI:layui(谐音:类UI) 是一款采用自身模块规范编写的前端 UI 框架,遵循原生 HTML/CSS/JS 的书写与组织形式,门槛极低,拿来即用。且是国人开发,拥有较为完善的中文文档。 Pymysql及PooledDB:PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库。DBUtils是一套Python数据库连接池包,并允许对非线程安全的数据库接口进行线程安全包装。
根据人脸检测年龄数据集,由100多个视频中收集的100名印度演员的19000张图像组成。所有的图像都是从视频帧中手动选择和裁剪,从而在比例、姿势、表情、照明、年龄、分辨率、遮挡和化妆方面具有高度的可变性。
2022-12-12 11:29:03 47.78MB 数据集 年龄 人脸 深度学习
基于mtcnn+facenet网络实现简单人脸检测识别系统python源码+训练好的模型文件+项目说明.7z 这两个工程都是keras模型, 所提供的模型文件都只有权重没有网络结构, 我利用作者提供的网络定义和权重文件重新生成了带有网络结构的权重文件. 比如原先只有权重的模型文件pnet.h5, 生成含网络结构和权重的模型文件PNET.h5. 接着用keras2onnx工具把它(PNET.h5)转换成了onnx模型pnet.onnx, 其他胶水部分的逻辑没什么变化. 具体的转换代码请参考keras_onnx.py文件. 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-12 11:28:57 2.46MB mtcnn facenet 人脸检测 人脸识别系统
使用PCA-2D-PCA和2D-Square-PCA进行人脸识别 用于识别人脸的Python中PCA / 2D-PCA / 2D(Square)-PCA的实现: 单人图像 集团形象 识别视频中的人脸 ORL数据集的准确性 PCA(93.42%) 二维PCA(96.05%) 2D(平方)-PCA(97.36%) 要求 麻木 OpenCV 科学的 用法 在Face_Recognition类中,使用来自(pca,2d-pca,2d2-pca)的algo_type 在Face_Recognition类中,将reco_type用作 对于单张图片= 0 视频= 1 对于组图像= 2 该项目使用ORL数据集,您可以将数据集放置在images文件夹中,并在dataset.py文件中更改数据集的名称(可以使用提供的FaceExtractor通过提取面部来创建新的数据集) 运行Face_Rec
1
Darknet/YOLOv4训练蒂法人脸识别模型 文件包括:darknet源码+蒂法图片+蒂法图片标注数据+训练配置+训练结果权重+测试图片和视频+测试结果文件 训练教程:https://feater.top/darknet/tifa-with-yolov4 视频测试效果:https://www.bilibili.com/video/BV1qL4y1T7ZB/ 训练平台为戴尔G15 1511 8核16线程 nvidia3060 土豪专用链接
2022-12-11 22:45:42 826.42MB YOLOv4 darknet 人脸识别 蒂法
1
里面有人脸识别的案例和人脸识别的教程,供大家参考。
2022-12-11 17:23:30 1.72MB 人脸识别 智能
1
该数据有32,203张图像,人脸分割模型,文件包括一个人脸检检测模型用来定位人脸在图像中的位置。 该数据有32,203张图像,人脸分割模型,文件包括一个人脸检检测模型用来定位人脸在图像中的位置。
2022-12-11 11:27:15 794.64MB 数据集 人脸识别 深度学习 图像