基于mtcnn+facenet网络实现简单人脸检测识别系统python源码+训练好的模型文件+项目说明.7z

上传者: DeepLearning_ | 上传时间: 2022-12-12 11:28:57 | 文件大小: 2.46MB | 文件类型: 7Z
基于mtcnn+facenet网络实现简单人脸检测识别系统python源码+训练好的模型文件+项目说明.7z 这两个工程都是keras模型, 所提供的模型文件都只有权重没有网络结构, 我利用作者提供的网络定义和权重文件重新生成了带有网络结构的权重文件. 比如原先只有权重的模型文件pnet.h5, 生成含网络结构和权重的模型文件PNET.h5. 接着用keras2onnx工具把它(PNET.h5)转换成了onnx模型pnet.onnx, 其他胶水部分的逻辑没什么变化. 具体的转换代码请参考keras_onnx.py文件. 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。

文件下载

资源详情

[{"title":"( 60 个子文件 2.46MB ) 基于mtcnn+facenet网络实现简单人脸检测识别系统python源码+训练好的模型文件+项目说明.7z","children":[{"title":"detect_video.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"face_detection_client","children":[{"title":"face_detection_onnx.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"mtcnn_onnx.py <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false},{"title":"face_detection.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"face_detection_pb.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"mtcnn.py <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"mtcnn_pb.py <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"img","children":[{"title":"A.jpg <span style='color:#111;'> 11.05KB </span>","children":null,"spread":false},{"title":"test.jpg <span style='color:#111;'> 169.17KB </span>","children":null,"spread":false},{"title":"out.jpg <span style='color:#111;'> 414.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"keras_onnx.py <span style='color:#111;'> 12.70KB </span>","children":null,"spread":false},{"title":"face_recognition_client","children":[{"title":"facenet.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"face_dataset","children":[{"title":"obama.jpg <span style='color:#111;'> 112.00KB </span>","children":null,"spread":false},{"title":"timg.jpg <span style='color:#111;'> 52.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"facenet_tf.py <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"facenet_onnx.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"face_recognize.py <span style='color:#111;'> 6.87KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 11.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"mtcnn.py <span style='color:#111;'> 10.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"detect.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"h5_to_pb.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"项目说明.md <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"model_data","children":[{"title":"rnet.h5 <span style='color:#111;'> 428.04KB </span>","children":null,"spread":false},{"title":"pnet.h5 <span style='color:#111;'> 55.84KB </span>","children":null,"spread":false},{"title":"onet.h5 <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"mtcnn.py <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"repo","children":[{"title":"onet_tf","children":[{"title":"config.pbtxt <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.graphdef <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 53B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"rnet_onnx","children":[{"title":"config.pbtxt <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"pnet_onnx","children":[{"title":"config.pbtxt <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"rnet","children":[{"title":"config.pbtxt <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.plan <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"facenet","children":[{"title":"config.pbtxt <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"onet_onnx","children":[{"title":"config.pbtxt <span style='color:#111;'> 376B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"facenet_tf","children":[{"title":"config.pbtxt <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.graphdef <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 53B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"facenet_onnx","children":[{"title":"config.pbtxt <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"pnet_tf","children":[{"title":"config.pbtxt <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.graphdef <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 53B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"rnet_tf","children":[{"title":"config.pbtxt <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.graphdef <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 53B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"onet","children":[{"title":"config.pbtxt <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.plan <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"pnet","children":[{"title":"config.pbtxt <span style='color:#111;'> 306B </span>","children":null,"spread":false},{"title":"1","children":[{"title":"model.plan <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明