聊天学习者 在TensorFlow中基于新的序列到序列(NMT)模型实现的聊天机器人,具有无缝集成的某些规则。 对于那些对中文聊天机器人感兴趣的人,请。 ChatLearner(Papaya)的核心是基于NMT模型( )构建的,此处已对其进行了调整以适应聊天机器人的需求。 由于TensorFlow 1.4中tf.data API的更改以及自TensorFlow 1.12以来的许多其他更改,此ChatLearner版本仅支持TF版本1.4至1.11。 如果您需要支持TensorFlow 1.12,可以在tokenizeddata.py文件中进行轻松更新。 在开始其他一切之前,您可能需要
2022-05-08 18:05:57 23.08MB python deep-learning tensorflow chatbot
1
猫和狗 当我们的数据集不足时,最常用的方法之一是使用预先训练的模型。 在我们的案例中,我们将考虑在ImageNet数据集上训练的大型卷积网络(140万个带标签的图像和1000个不同的类)。 ImageNet包含许多动物类别,包括不同种类的猫和狗,因此我们可以期望在猫与狗的分类问题上表现出色。 我们可以使用的一些主干: •Xception•InceptionV3•ResNet50•VGG16•VGG19•MobileNet 我将使用由Karen Simonyan和Andrew Zisserman在2014年开发的VGG16架构,该架构是ImageNet的一种简单且广泛使用的convnet架构。 VGG16: from keras.applications import VGG16 conv_base=VGG16(weights=('imagenet'),
1
集成深度学习 使用集成方法进行深度学习,神经网络作为基础学习器,线性判别分析 (LDA) 作为二级学习器。
2022-05-07 21:52:18 8KB MATLAB
1
Embedded low-power deep learning with TIDL.pdf
2022-05-07 16:58:15 719KB Embedded lowpower Deep learning
1
深度情感:使用注意卷积网络的面部表情识别 这是研究论文“的PyTorch实现 [注意]这不是官方执行文件 建筑学 基于注意力卷积网络的端到端深度学习框架 通过空间变压器网络添加注意机制 数据集 先决条件 要运行此代码,您需要具有以下库: 火炬> = 1.1.0 火炬视觉== 0.5.0 OpenCV tqdm 皮尔 该存储库的结构 该存储库的组织方式为: 此文件包含数据集和训练循环的设置。 此文件包含用于评估测试数据模型和网络摄像头实时测试的源代码。 此文件包含模型类 此文件包含数据集类 此文件包含数据集的设置 用法 DeepLearning_by_PhDScholar创建的超酷视频,介绍如何使用此实现。 资料准备 从Kaggle下载数据集,然后将train.csv和test.csv解压缩到./data文件夹中。 怎么跑 设置数据集 python main.py [-s
2022-05-07 11:53:19 137KB Python
1
Jason Brownlee 的深度学习书Deep Learning with Python,包括文档和代码。
2022-05-06 22:39:03 2.47MB 人工智能 Jason Brownlee 深度学习
1
讲述了深度学习的流程:获取或创建数据集、预处理和特征提取、预测模型开发和部署。并通过实例讲解整个流程,该PDF为对应视频的课件。
2022-05-05 22:25:59 2.07MB 深度学习 雷达
1
DeepLPF:用于图像增强的深度局部参数过滤器(CVPR 2020) ( ,皮埃尔·马扎(Pierre Marza),( ,( , 华为诺亚方舟实验室 CVPR 2020论文DeepLPF的主要存储库:用于图像增强的深度局部参数滤波器。 在这里,您将找到代码链接,预训练的模型以及有关数据集的信息。 如果您需要协助,请提出Github问题。 输入 标签 我们的(DeepLPF) 输入 标签 我们的(DeepLPF) 输入 标签 我们的(DeepLPF) 输入 标签 我们的(DeepLPF) 输入 标签 我们的(DeepLPF) 依存关系 requirements.txt包含该代码使用的Python包。 如何训练DeepLPF并将模型用于推理 训练DeepLPF 指示: 要使此代码适用于您的系统/问题,您将需要编辑数据加载功能,如下所示: main.py,更
2022-05-05 21:20:50 14.07MB computer-vision deep-learning paper rgb
1
cadrl_ros(使用Deep RL避免冲突) 用Deep RL训练的动态避障算法的ROS实现 纸: M.Everett,Y.Chen和JP How,《具有深度强化学习的动态决策代理之间的运动计划》,IEEE / RSJ国际智能机器人和系统会议(IROS),2018年 论文: : 视频: : Bibtex: @inproceedings{Everett18_IROS, address = {Madrid, Spain}, author = {Everett, Michael and Chen, Yu Fan and How, Jonathan P.}, bookti
1
Christopher Bishop的模式识别和机器学习书的注释,代码和笔记本的存储库模式识别和机器学习(PRML)该项目旨在记录我在阅读Christopher Bishop的PRML书方面取得的进步。 它包含用于更好地理解所提出的想法的笔记本,以及指向有用论文和自制笔记的链接。 有用的链接PRML本书矩阵演算矩阵食谱PRML勘误更多PRML勘误(回购)的内容。 ├──README.md────第01章│├──ch1_ex_tests.ipynb│├──第1章.ipynb│└──einsum.ipynb├──第02章│├──E
2022-05-05 15:03:18 15.56MB Python Deep Learning
1