Breast cancer survival.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:03 38KB R spss
1
随机森林图像matlab代码使用CNN的肺癌亚型分类 入门 演示版 random_forest.ipynb 包含什么 癌症亚型分类管道的Python源代码 MATLAB源代码,用于从3D原始图像生成2D联合直方图 二维关节直方图(.csv)的肺癌数据集 可视化每一步的检测管线 在自己的数据集上进行训练的示例 依存关系 Python 3.4 TensorFlow 1.3 凯拉斯2.0.8 用法 结果 接触 查看我的学士论文:基于多模态CT的2D联合直方图的肺癌亚型深度学习分类器,以获取有关此工作的更多详细信息。
2022-04-22 10:11:41 2.3MB 系统开源
1
使用Python检测肺癌 数据集 癌症影像档案库(TCIA) 代码文件 代码以模块化方式编写 PredictCancer.py:用于测试图像的最终程序 NeuralNetwork.py:使用SKlearn的MLP学习功能并使用pickle保存权重 LungCancerTrain.py:所有用于模型训练的图像处理技术和代码均在此处编写 Dataset_create.py:用于创建正例和负例的文件夹并以所需格式命名图像 两种类别的测试用例图像,并连同其终端输出一起添加到存储库中,以供参考 依存关系 Python3,OpenCV-cv2,泡菜,数据文件库 输出 正面案例 否定情况 这项工作是与我的朋友Tarun Bhargav Sriram合作完成的,该项目是数字图像处理选修课的一个项目。 有关项目的任何疑问,请联系
2022-04-03 21:07:30 5KB Python
1
优点:基于微波雷达的成像工具箱(MERIT)是免费的开源软件,用于基于微波雷达的成像。 包括入门指南和示例数据,MERIT是一个灵活,可扩展的框架,用于开发,测试,运行和优化基于雷达的成像算法
2022-03-20 14:51:32 456KB matlab radar matlab-toolbox breast-cancer
1
皮肤癌 使用Pytorch进行深度学习的皮肤病变分类
2022-03-15 20:33:19 638KB JupyterNotebook
1
UCI机器学习数据集,Breast Cancer Wisconsin (Diagnostic) Data Set,已整理,有Excel格式文件
2022-01-10 09:19:16 154KB 机器学习 KNN
1
乳腺癌检测应用 使用机器学习XGBoost分类器的乳腺癌检测应用程序
2021-12-31 09:32:00 1.93MB HTML
1
胰腺癌(PAAD)是癌症死亡的第三个最常见的原因,小于5%的总体5年生存率,并预计到2030年将成为第二大美国癌症死亡率的原因。 Cancer prediction_datasets..txt
2021-12-26 12:19:14 212B 数据集
1
Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with.ABC (Artificial Bee Colony) approaches,
2021-12-24 16:45:19 646KB intelligent optimization; cancer classification;
1
与所有其他癌症相比,乳腺癌是女性发生的第二大癌症。 2004 年记录了大约 110 万例病例。观察到这种癌症的发病率随着工业化和城市化以及早期检测设施的增加而增加。 它在高收入国家仍然更为常见,但现在在包括非洲、亚洲大部分地区和拉丁美洲在内的中等和低收入国家Swift增加。 在所有病例中,乳腺癌是致命的,并且是女性癌症死亡的主要原因,占全球所有癌症死亡人数的 16%。 本研究论文的目的是提出一份关于乳腺癌的报告,我们利用这些可用的技术进步来开发乳腺癌存活率的预测模型。 我们使用了三种流行的数据挖掘算法(朴素贝叶斯、RBF 网络、J48)来开发使用大型数据集(683 例乳腺癌病例)的预测模型。我们还使用了 10 倍交叉验证方法来测量无偏估计用于性能比较目的的三个预测模型。 结果(基于平均准确度乳腺癌数据集)表明,朴素贝叶斯是最好的预测器,对保持样本的准确度为 97.36%(该预测准确度比文献中报道的任何预测准确度都要好),RBF 网络出来了第二个以 96.77% 的准确率,J48 以 93.41% 的准确率排在第三位。
2021-12-19 13:23:16 394KB Breast cancer data
1