本文汇总了遥感图像处理与计算机视觉交叉领域的小目标检测创新方向,重点介绍了多个前沿模型和方法。主要内容包括:1)针对航空图像小目标检测的CFENet网络,通过特征抑制模块(FSM)和改进损失函数(IGWD)提升检测精度;2)轻量化检测算法LTDNet,通过专用骨干网络RepViT-TD和轻量化检测头实现高效检测;3)基于YOLO的MDSF模块,增强红外小目标检测的敏感性和鲁棒性;4)ABRNet网络,通过自适应感受野和跨尺度融合优化红外小目标检测。此外,文章还提供了42篇顶刊和70多篇顶会论文的参考资源,为研究者提供创新思路。 小目标检测作为遥感图像处理和计算机视觉领域的交叉研究方向,近年来得到了快速的发展。在这一领域,研究者们致力于开发更为精确、高效的检测算法,以应对诸如航空图像和红外图像中的小目标检测问题。随着深度学习技术的进步,新的网络架构和算法不断涌现,大大提高了小目标检测的性能。 在这些创新中,CFENet网络因其独特的特征抑制模块(FSM)和改进的损失函数(IGWD)而脱颖而出。FSM的设计旨在有效抑制背景噪声和非目标信息的干扰,而IGWD则针对航空图像的特点,设计了更加合理的损失计算方式,以提升检测的准确度。这些创新显著提高了网络对小目标的识别能力。 轻量化检测算法LTDNet的提出,为处理计算资源受限的场景提供了可能。LTDNet采用的专用骨干网络RepViT-TD结合了视觉变换器(Vision Transformer)的优势和轻量级网络的计算效率。其轻量化检测头的设计,使得在保持检测性能的同时,极大地减少了计算复杂度和资源消耗,适合于需要快速处理的场合。 针对红外图像中的小目标检测问题,基于YOLO的MDSF模块引入了多尺度特征融合技术,大幅增强了网络对小目标的检测敏感性和鲁棒性。通过动态调整特征融合的尺度,MDSF能够适应不同的红外图像特性,改善了目标的检测效果。 而ABRNet网络则侧重于优化红外小目标检测中的感受野和尺度问题。ABRNet通过引入自适应感受野机制,允许网络根据目标的特征和场景的复杂度自动调整感受野大小,同时,跨尺度融合技术能够整合来自不同层次的特征信息,从而更准确地识别红外图像中的小目标。 为了进一步促进小目标检测领域的发展,本文还整合了42篇顶级期刊和70多篇顶级会议的论文资源。这些丰富的参考资料为研究者提供了大量的创新思路和实践经验,助力他们在此领域进行更深入的探索。 小目标检测领域的研究正趋于多样化和深入化,通过引入更先进的网络架构和算法,结合特定应用场景的优化,研究人员正不断推动这一领域的技术边界。与此同时,相关领域的研究资源的共享,也为进一步的研究提供了便利。
2026-01-28 16:16:14 5KB 软件开发 源码
1
交通物体检测与实例分割 本项目基于YOLOv8框架,能够对交通物体进行检测。对图片能检测到物体并用锚框进行标注展示,对于视频则是对每一帧进行物体检测分析,同样使用锚框进行标注,最终生成的物体检测视频能实时追踪物体并用不同颜色框进行标注展示。 用户除了选择常规的模型进行物体检测之外,还可以使用专门进行实例分割的模型。在训练预测之后,可以得到不同的物体。与单纯的物体检测有些不同,实例分割能够对物体的轮廓进行较为精细的标注,并将整个物体以特定的颜色进行标注,相比于普通的物体检测能够产生更精细且更好的可视化效果。 交通轨迹识别 本项目能够对导入的交通视频进行物体检测,通过物体的id标注,视频的逐帧分析,捕捉每个物体对应的实时位置,同时绘制位置点到视频中,最后整合能够生成带有绘制物体轨迹的视频,实现交通车辆的轨迹识别。 车辆越线计数 在进行车辆跟踪,轨迹绘制的基础上,本软件还能对车辆进行越线计数。在视频的关键处,可以绘制分界线,当车辆越过该线时,通过逐帧捕捉车辆坐标信息,对应id后能够进行车辆计数值的自增,实现越线计数的功能。 生成交通数据集 在物体轨迹识别的过程,捕捉位置坐标并绘制轨迹时,将不同车辆的位置信息分别记录起来,同时记录车辆id、类别等信息。在视频检测完毕后,对数据进行汇总并做相关处理,能够生成较为理想的交通数据集。 交通数据分析 将生成的交通数据集进行导入,能够进行关键数据的具体分析,包括不同类别物体的检测计数,车辆位置信息等。通过热力图,柱状图等方式直观呈现数据,利于清楚看出数据的各项分布情况。
2026-01-28 15:16:40 214.13MB
1
圆筒端面点云数据,来源于机器视觉实际项目,由高精度梅卡曼德结构光相机拍摄。可用来进行三维视觉检测练习,用于三维圆检测,距离聚类,异常点剔除,大平面检测
2026-01-27 17:34:27 1.42MB 机器视觉 三维视觉 三维检测
1
YOLOv5是一种高效、准确的深度学习目标检测模型,由 Ultralytics 团队开发,其全称为"YOLO: You Only Look Once"的第五代版本。该模型以其快速的推理速度和良好的检测性能而备受青睐,适用于实时场景,如视频分析、自动驾驶等。将YOLOv5部署到ONNXRuntime上,可以进一步优化推理性能,同时利用ONNXRuntime跨平台的特性,实现多硬件支持。 ONNXRuntime是微软和Facebook共同维护的一个高性能的推理引擎,它可以运行多种机器学习框架导出的ONNX(Open Neural Network Exchange)模型。ONNX是一种开放格式,用于表示训练好的机器学习模型,旨在提高不同框架之间的模型共享和推理效率。 在C++中部署YOLOv5到ONNXRuntime的过程主要包括以下步骤: 1. **模型转换**:需要将训练好的YOLOv5 PyTorch模型转换为ONNX格式。这通常通过`torch.onnx.export`函数实现,将PyTorch模型、输入样本形状和其他参数传递给该函数,生成ONNX模型文件。 2. **环境准备**:安装ONNXRuntime C++ API库,确保编译环境支持C++11或更高版本。ONNXRuntime库提供了用于加载、执行和优化模型的API。 3. **加载模型**:在C++代码中,使用ONNXRuntime的` Ort::Session`接口加载ONNX模型。需要提供模型文件路径和会话选项,例如内存分配策略。 4. **数据预处理**:根据YOLOv5的输入要求,对输入图像进行预处理,包括缩放、归一化等操作,使其符合模型的输入规格。 5. **推理执行**:创建` Ort::Value`实例来存储输入数据,然后调用`Session::Run`方法执行推理。此方法接受输入和输出名称及对应的` Ort::Value`对象,执行模型并返回结果。 6. **后处理**:YOLOv5的ONNX模型输出是原始的边界框坐标和类别概率,需要进行非极大值抑制(NMS)等后处理步骤,以去除重复的预测并筛选出高置信度的检测结果。 7. **性能优化**:ONNXRuntime支持硬件加速,如GPU或Intel的VPU,可以通过配置会话选项来启用。此外,可以使用`Ort::ModelOptimizationSession`进行模型优化,以进一步提升推理速度。 在`yolov5-onnxruntime-master`这个项目中,可能包含了完整的C++源码示例,展示了如何实现上述步骤。通过研究源代码,你可以了解到具体的实现细节,例如如何构建会话、处理输入输出数据以及如何进行模型优化。这个项目对于学习如何在C++中部署ONNX模型,特别是目标检测模型,具有很高的参考价值。 YOLOv5在ONNXRuntime上的实时部署涉及到模型转换、环境配置、会话管理、数据处理和性能优化等多个环节。C++的ONNXRuntime API提供了强大的工具来实现这些功能,使得高性能的AI应用开发变得更加便捷。
2026-01-27 10:00:46 102.92MB
1
标题中的“很好用的摄像头型号检测工具”指的是一个专门用于识别和检测计算机或移动设备上摄像头型号的应用程序。这类工具通常能帮助用户了解他们的设备所连接的摄像头的具体型号,以便于解决问题、升级驱动或者优化视频通话质量。 描述中的“强烈推荐强烈推荐强烈推荐”表达了对这个工具的高度评价和推荐,意味着它具有用户友好的界面,准确的检测能力,以及可能的易用性和高效性。用户可能通过这个工具快速、无误地识别出摄像头的信息,对于需要处理多台设备或经常遇到摄像头问题的技术人员尤其有用。 标签“摄像头型号检测工具”进一步明确了该软件的主要功能,即专注于摄像头硬件的识别。这样的工具可能包含以下特点: 1. **硬件信息读取**:能够读取摄像头的硬件ID,这是识别摄像头型号的关键信息。 2. **品牌识别**:能够识别出摄像头的品牌,如Logitech、Microsoft、Dell等。 3. **驱动兼容性检查**:检查当前安装的驱动是否与摄像头型号匹配,如果有问题,可能提供更新建议。 4. **实时显示**:在运行时实时显示摄像头的图像,帮助用户确认摄像头是否正常工作。 5. **兼容性强**:适用于各种操作系统,如Windows、macOS、Linux等。 6. **简单易用**:界面简洁,操作流程直观,无需专业知识即可使用。 压缩包子文件“摄像头型号检测工具ChipTypedetector.exe”很可能是该工具的可执行文件,文件名中的"ChipType"暗示它可能特别关注摄像头的芯片类型,这对于理解摄像头的性能和兼容性至关重要。芯片类型通常决定了摄像头的分辨率、帧率、色彩表现等关键指标。 在使用这类工具时,用户一般只需运行这个.exe文件,然后按照提示操作,工具会自动扫描并显示摄像头的相关信息。对于技术人员来说,这能帮助他们快速定位问题,例如,如果摄像头在某些应用中无法正常工作,可以使用此类工具来判断是硬件问题还是驱动问题。对于普通用户,了解摄像头型号也有助于他们在购买新的摄像头配件或寻求技术支持时提供准确信息。 这款“很好用的摄像头型号检测工具”是一个实用的诊断和信息获取工具,无论是专业人士还是普通用户都能从中受益。其高度的推荐度表明它在实际使用中表现出色,值得信赖。
2026-01-26 22:45:48 111KB 摄像头型号检测工具
1
摄像头型号检测工具,可以自动检测各种杂牌摄像头并安装驱动
2026-01-26 22:12:50 244KB
1
该数据集包含约18000张已标注的行人照片,适用于YOLOv5目标检测模型的训练。数据集分为训练集、测试集和验证集,可直接用于模型训练。此外,还提供了已训练好的模型文件best.pt(基于yolov5s.pt)。数据集通过百度网盘免费提供,链接和提取码已附在内容中。 YOLOv5行人检测数据集是一个专为YOLOv5目标检测模型量身打造的大型图像数据集,其中包含约18000张精心标注的行人图片。这些图片被精心分成了训练集、测试集和验证集三部分,使研究人员和开发人员能够直接利用该数据集对YOLOv5模型进行训练和测试。这样的划分有利于更准确地评估模型在不同阶段的表现,进而提升模型性能。 数据集中的每张图片都对行人进行了精确的标注,这意味着模型可以学习到行人目标在不同场景、不同光照、不同距离下的外观特征。此外,数据集还提供了一个已经预训练好的YOLOv5模型文件best.pt,这一模型是基于yolov5s.pt架构进行训练的。该预训练模型可以作为起点,便于进一步的定制化训练和优化,对于那些希望快速部署行人检测功能的开发者来说,无疑是一大福音。 该数据集通过百度网盘提供下载,下载链接和提取码也已经包含在了相关的内容说明中。这种便捷的获取方式大大降低了数据集的使用门槛,方便了广大开发者和研究人员访问和使用。 作为一个专注于软件开发和源码分享的资源,该数据集附带的代码包和软件包标签彰显了其在软件开发社区中的价值。它不仅适用于初学者,还能为经验丰富的开发人员提供深度学习模型训练的实践素材,从而推动计算机视觉技术在行人检测等领域的进步。 YOLOv5行人检测数据集的推出,也反映了目标检测领域的快速发展,特别是YOLO系列算法因其检测速度快、精度高、易于部署而受到广泛关注。随着深度学习和机器视觉技术的不断成熟,这类高质量、大规模的标注数据集对于推动算法创新和实际应用落地具有非常重要的作用。 值得注意的是,该数据集中的图片可能来自不同的来源,因此在使用这些图片时需要注意版权问题和隐私保护的相关法律法规。确保在合法合规的框架内使用数据集进行模型训练和研究工作,是每个使用数据集的研究者和开发者必须遵守的基本原则。
2026-01-26 17:08:38 5KB 软件开发 源码
1
本文详细介绍了一种基于YOLOv8、YOLOv5和YOLOv11的野生菌菇检测识别系统,该系统利用PyQt5设计了两种简约的UI界面,支持多种功能如单张图片识别、文件夹遍历识别、视频文件识别、摄像头实时识别、结果文件导出以及目标切换查看。系统通过深度学习技术,结合卷积神经网络和注意力机制,实现了对野生菌菇的高精度检测和分类。文章还详细介绍了系统环境配置、数据集结构、算法模型(包括YOLOv8和YOLOv11的核心特性和改进)、模型训练和评估步骤,以及训练结果的分析。该系统为野生菌菇的快速准确识别提供了技术支持,对食品安全和生态保护具有重要意义。 野生菌菇检测系统项目源码的详细介绍表明,该系统是一个综合性的技术应用项目,它以深度学习技术为基础,主要针对野生菌菇的检测和分类任务进行了深入开发。项目的核心是采用了YOLO系列的卷积神经网络模型,其中特别提到了YOLOv8、YOLOv5和YOLOv11这三种模型的具体应用。 系统使用了PyQt5框架,设计了两个用户友好的界面,分别对应不同的操作模式和功能。第一种界面能够处理单张图片的识别任务,第二种界面则适用于批量处理,支持文件夹遍历识别和视频文件的连续识别。此外,系统还包括了对摄像头捕获的实时影像进行实时识别的功能,极大的提高了使用灵活性。 在核心功能上,系统依赖于先进的深度学习算法,特别是卷积神经网络(CNN),这种算法在图像识别和分类领域有着广泛的应用。为了进一步提升识别性能,系统还融入了注意力机制,这能够使模型更加聚焦于图像中关键信息的提取,提高了检测的准确性。 系统还涵盖了模型训练和评估的全过程。文章详细介绍了如何配置系统运行环境,构建和组织数据集,以及如何训练和优化模型。对于YOLOv8和YOLOv11模型,文章特别强调了它们的核心特性以及在项目中的改进点。 训练完成后的模型评估步骤也是不可或缺的一部分,这一步骤对于保证模型在实际应用中的性能至关重要。评估内容包括但不限于模型的准确性、召回率、F1分数等指标,以确保模型对野生菌菇的识别结果既准确又全面。 野生菌菇检测系统所展现的技术支持,对于食品安全和生态保护具有极其重要的意义。在食品安全方面,快速准确的检测野生菌菇能够帮助防止食用有毒菌菇导致的食物中毒事件。在生态保护方面,有效的分类和监测野生菌菇生长状况,有助于保护生物多样性,维持生态平衡。 YOLO系列模型作为目标检测技术的代表,一直以来在速度和准确性方面都表现卓越。在野生菌菇检测领域,它们的运用进一步证明了其在处理复杂图像识别任务中的强大能力。而这种结合了计算机视觉技术的系统,不仅提升了识别效率,还为科研人员和普通用户提供了实用、高效的工具。 YOLO模型的进化,比如YOLOv8和YOLOv11的出现,不断推动着目标检测技术的进步。这些模型的核心特性,如高精度的检测能力,快速的处理速度,使得它们在野生菌菇检测系统中表现得尤为出色。模型的改进点,如网络结构的调整、特征提取方式的优化等,使得系统对于野生菌菇的识别更加精准,为野生菌菇的分类和研究提供了有力的数据支持。 YOLOv8和YOLOv11的引入,也展示了深度学习在计算机视觉领域应用的广泛前景。深度学习的网络模型,尤其是卷积神经网络,能够从大量的图像数据中自动提取特征,并通过训练学习到如何识别和分类不同种类的野生菌菇。注意力机制的引入,则进一步强化了模型对于特定特征的识别能力,使得检测更加高效和准确。 野生菌菇检测系统项目源码的发布,不仅为相关领域提供了一个强大的工具,也展示了深度学习和计算机视觉技术在实际应用中的巨大潜力和应用价值。通过持续的技术创新和模型优化,未来在野生菌菇检测乃至其他目标检测任务中,我们有望看到更加智能化、自动化的解决方案,为科研工作和日常生活带来更多的便利。
2026-01-26 11:10:00 10KB 深度学习 目标检测 计算机视觉
1
### 利用FPGA和DSP结合实现雷达多目标实时检测 #### 引言与背景 在现代军事防御体系中,雷达扮演着至关重要的角色,尤其是在空中情报收集与目标监测方面。然而,传统的雷达系统往往受限于手动操作和有限的数据处理能力,这在多目标、复杂环境下的快速响应和准确性方面存在明显不足。随着信息技术的发展,特别是FPGA(Field-Programmable Gate Array)和DSP(Digital Signal Processor)技术的应用,为提升雷达系统性能提供了新的可能。 #### FPGA与DSP结合的优势 FPGA与DSP的结合,为雷达系统带来了前所未有的灵活性和高效性。FPGA作为一种可现场编程的逻辑器件,其优势在于能够实现高度定制化的并行计算,特别适合处理雷达信号的实时分析和处理需求。DSP则以其强大的数字信号处理能力和软件可编程性,成为控制算法实现和高级数据处理的理想选择。两者结合,既克服了硬件资源限制,又满足了实时性和处理速度的要求,形成了一个高效的雷达信号处理平台。 #### 解决方案的关键技术点 1. **存储空间与实时处理的矛盾解决**:通过FPGA的并行流水线结构,能够有效处理大量雷达数据,同时利用其与外部存储器的紧密结合,解决了有限线路板面积与大数据存储需求之间的矛盾。FPGA的并行计算特性确保了雷达数据的实时处理,即使在DSP处理速度有限的情况下,也能保持系统的高效运行。 2. **航迹相关与系统控制**:FPGA负责核心的信号处理任务,而DSP则承担了更复杂的航迹相关算法、系统运行模式的控制以及与上位机的通信与数据交换工作。这种分工协作,实现了系统的最佳配置,确保了雷达多目标检测的准确性和可靠性。 3. **系统集成与优化**:在高速并行信号处理领域,FPGA与DSP的结合已成为国际主流技术趋势,尤其在中国国情下更为适用。该技术方案不仅提升了现有雷达系统的自动化水平和控制能力,还充分考虑了成本效益和系统兼容性,使系统整体性能得到显著提升。 #### 实施效果与前景展望 当前,基于FPGA和DSP技术的雷达系统已经通过了严格的测试和验收,各项指标均达到了预期设计要求。这一成果不仅验证了该技术方案的有效性和可行性,也为未来雷达系统的升级和智能化发展奠定了坚实的基础。随着技术的不断进步,FPGA与DSP的融合应用将继续深化,有望在更广泛的军事和民用领域发挥关键作用,推动雷达技术迈向更高的水平。 #### 结论 利用FPGA和DSP的结合,实现了雷达多目标实时检测的关键技术突破,不仅解决了雷达系统在实时处理、存储空间以及系统控制方面的挑战,还提升了雷达系统的整体性能和智能化水平。这一创新方案对于增强国防能力、适应现代化战争的需求具有重要意义,展现了科技在军事领域的巨大潜力和广阔前景。
2026-01-25 20:27:33 195KB FPGA DSP
1
内容概要:本文深入探讨了自动驾驶Lattice规划算法的关键组成部分——轨迹采样、轨迹评估和碰撞检测。首先介绍了轨迹采样的重要性和实现方式,分别提供了Matlab和C++代码示例。接着讲解了轨迹评估的标准及其与碰撞检测的关系,同样给出了两种编程语言的具体实现。最后,文章还介绍了优化绘图、增加轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适合人群:对自动驾驶技术和Lattice规划算法感兴趣的开发者和技术爱好者,尤其是有一定编程基础并希望通过实际代码加深理解的人群。 使用场景及目标:适用于研究和开发自动驾驶系统的技术人员,旨在帮助他们掌握Lattice规划算法的核心原理和实现细节,从而应用于实际项目中。通过学习本文提供的代码示例,读者可以在自己的环境中复现算法,并根据需求进行扩展和改进。 其他说明:文章不仅提供理论解释,还包括详细的代码实现步骤,特别是针对C++代码的VS2019编译教程和Qt5.15的可视化支持,使读者能够在实践中更好地理解和应用所学知识。
2026-01-25 17:07:35 807KB C++ Matlab
1