YOLOv5行人检测数据集[代码]

上传者: ggg99 | 上传时间: 2026-01-26 17:08:38 | 文件大小: 5KB | 文件类型: ZIP
该数据集包含约18000张已标注的行人照片,适用于YOLOv5目标检测模型的训练。数据集分为训练集、测试集和验证集,可直接用于模型训练。此外,还提供了已训练好的模型文件best.pt(基于yolov5s.pt)。数据集通过百度网盘免费提供,链接和提取码已附在内容中。 YOLOv5行人检测数据集是一个专为YOLOv5目标检测模型量身打造的大型图像数据集,其中包含约18000张精心标注的行人图片。这些图片被精心分成了训练集、测试集和验证集三部分,使研究人员和开发人员能够直接利用该数据集对YOLOv5模型进行训练和测试。这样的划分有利于更准确地评估模型在不同阶段的表现,进而提升模型性能。 数据集中的每张图片都对行人进行了精确的标注,这意味着模型可以学习到行人目标在不同场景、不同光照、不同距离下的外观特征。此外,数据集还提供了一个已经预训练好的YOLOv5模型文件best.pt,这一模型是基于yolov5s.pt架构进行训练的。该预训练模型可以作为起点,便于进一步的定制化训练和优化,对于那些希望快速部署行人检测功能的开发者来说,无疑是一大福音。 该数据集通过百度网盘提供下载,下载链接和提取码也已经包含在了相关的内容说明中。这种便捷的获取方式大大降低了数据集的使用门槛,方便了广大开发者和研究人员访问和使用。 作为一个专注于软件开发和源码分享的资源,该数据集附带的代码包和软件包标签彰显了其在软件开发社区中的价值。它不仅适用于初学者,还能为经验丰富的开发人员提供深度学习模型训练的实践素材,从而推动计算机视觉技术在行人检测等领域的进步。 YOLOv5行人检测数据集的推出,也反映了目标检测领域的快速发展,特别是YOLO系列算法因其检测速度快、精度高、易于部署而受到广泛关注。随着深度学习和机器视觉技术的不断成熟,这类高质量、大规模的标注数据集对于推动算法创新和实际应用落地具有非常重要的作用。 值得注意的是,该数据集中的图片可能来自不同的来源,因此在使用这些图片时需要注意版权问题和隐私保护的相关法律法规。确保在合法合规的框架内使用数据集进行模型训练和研究工作,是每个使用数据集的研究者和开发者必须遵守的基本原则。

文件下载

资源详情

[{"title":"( 3 个子文件 5KB ) YOLOv5行人检测数据集[代码]","children":[{"title":"Wb6Twyciby6JUiBJV7vn-master-d9d788c0445ecb55baeb3f34a417e72a0606d4fb","children":[{"title":"index.html <span style='color:#111;'> 17.55KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":".inscode <span style='color:#111;'> 69B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明