基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档

上传者: 2301_76484015 | 上传时间: 2026-01-28 15:16:40 | 文件大小: 214.13MB | 文件类型: ZIP
交通物体检测与实例分割 本项目基于YOLOv8框架,能够对交通物体进行检测。对图片能检测到物体并用锚框进行标注展示,对于视频则是对每一帧进行物体检测分析,同样使用锚框进行标注,最终生成的物体检测视频能实时追踪物体并用不同颜色框进行标注展示。 用户除了选择常规的模型进行物体检测之外,还可以使用专门进行实例分割的模型。在训练预测之后,可以得到不同的物体。与单纯的物体检测有些不同,实例分割能够对物体的轮廓进行较为精细的标注,并将整个物体以特定的颜色进行标注,相比于普通的物体检测能够产生更精细且更好的可视化效果。 交通轨迹识别 本项目能够对导入的交通视频进行物体检测,通过物体的id标注,视频的逐帧分析,捕捉每个物体对应的实时位置,同时绘制位置点到视频中,最后整合能够生成带有绘制物体轨迹的视频,实现交通车辆的轨迹识别。 车辆越线计数 在进行车辆跟踪,轨迹绘制的基础上,本软件还能对车辆进行越线计数。在视频的关键处,可以绘制分界线,当车辆越过该线时,通过逐帧捕捉车辆坐标信息,对应id后能够进行车辆计数值的自增,实现越线计数的功能。 生成交通数据集 在物体轨迹识别的过程,捕捉位置坐标并绘制轨迹时,将不同车辆的位置信息分别记录起来,同时记录车辆id、类别等信息。在视频检测完毕后,对数据进行汇总并做相关处理,能够生成较为理想的交通数据集。 交通数据分析 将生成的交通数据集进行导入,能够进行关键数据的具体分析,包括不同类别物体的检测计数,车辆位置信息等。通过热力图,柱状图等方式直观呈现数据,利于清楚看出数据的各项分布情况。

文件下载

资源详情

[{"title":"( 574 个子文件 214.13MB ) 基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档","children":[{"title":"labels.cache <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"main.cc <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false},{"title":"CITATION.cff <span style='color:#111;'> 764B </span>","children":null,"spread":false},{"title":"CNAME <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"inference.cpp <span style='color:#111;'> 13.00KB </span>","children":null,"spread":false},{"title":"inference.cpp <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"main.cpp <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"main.cpp <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"style.css <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"Dockerfile-conda <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"Dockerfile-jetson <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"Dockerfile-python <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"Dockerfile-runner <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"inference.h <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"inference.h <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"comments.html <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"source-file.html <span style='color:#111;'> 858B </span>","children":null,"spread":false},{"title":"main.html <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"favicon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 34.52KB </span>","children":null,"spread":false},{"title":"object_tracking.ipynb <span style='color:#111;'> 8.15KB </span>","children":null,"spread":false},{"title":"object_counting.ipynb <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false},{"title":"heatmaps.ipynb <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"hub.ipynb <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"road.jpg <span style='color:#111;'> 109.10KB </span>","children":null,"spread":false},{"title":"extra.js <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 33.71KB </span>","children":null,"spread":false},{"title":"predict.md <span style='color:#111;'> 46.73KB </span>","children":null,"spread":false},{"title":"cfg.md <span style='color:#111;'> 41.82KB </span>","children":null,"spread":false},{"title":"train.md <span style='color:#111;'> 28.55KB </span>","children":null,"spread":false},{"title":"model-deployment-options.md <span style='color:#111;'> 22.77KB </span>","children":null,"spread":false},{"title":"yolov8.md <span style='color:#111;'> 20.39KB </span>","children":null,"spread":false},{"title":"openvino.md <span style='color:#111;'> 20.11KB </span>","children":null,"spread":false},{"title":"quickstart.md <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false},{"title":"heatmaps.md <span style='color:#111;'> 17.20KB </span>","children":null,"spread":false},{"title":"yolo-world.md <span style='color:#111;'> 17.07KB </span>","children":null,"spread":false},{"title":"yolo-common-issues.md <span style='color:#111;'> 16.84KB </span>","children":null,"spread":false},{"title":"nvidia-jetson.md <span style='color:#111;'> 16.62KB </span>","children":null,"spread":false},{"title":"train_custom_data.md <span style='color:#111;'> 16.52KB </span>","children":null,"spread":false},{"title":"track.md <span style='color:#111;'> 16.22KB </span>","children":null,"spread":false},{"title":"roboflow.md <span style='color:#111;'> 15.99KB </span>","children":null,"spread":false},{"title":"model_export.md <span style='color:#111;'> 14.81KB </span>","children":null,"spread":false},{"title":"inference-api.md <span style='color:#111;'> 14.76KB </span>","children":null,"spread":false},{"title":"isolating-segmentation-objects.md <span style='color:#111;'> 14.75KB </span>","children":null,"spread":false},{"title":"pytorch_hub_model_loading.md <span style='color:#111;'> 14.37KB </span>","children":null,"spread":false},{"title":"simple-utilities.md <span style='color:#111;'> 14.11KB </span>","children":null,"spread":false},{"title":"yolov9.md <span style='color:#111;'> 13.69KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.13KB </span>","children":null,"spread":false},{"title":"sam.md <span style='color:#111;'> 12.99KB </span>","children":null,"spread":false},{"title":"CI.md <span style='color:#111;'> 12.81KB </span>","children":null,"spread":false},{"title":"pose.md <span style='color:#111;'> 12.41KB </span>","children":null,"spread":false},{"title":"kfold-cross-validation.md <span style='color:#111;'> 12.32KB </span>","children":null,"spread":false},{"title":"python.md <span style='color:#111;'> 12.11KB </span>","children":null,"spread":false},{"title":"object-counting.md <span style='color:#111;'> 12.05KB </span>","children":null,"spread":false},{"title":"architecture_description.md <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false},{"title":"obb.md <span style='color:#111;'> 11.80KB </span>","children":null,"spread":false},{"title":"segment.md <span style='color:#111;'> 11.68KB </span>","children":null,"spread":false},{"title":"yolo-performance-metrics.md <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"multi_gpu_training.md <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false},{"title":"projects.md <span style='color:#111;'> 11.16KB </span>","children":null,"spread":false},{"title":"classify.md <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"detect.md <span style='color:#111;'> 11.04KB </span>","children":null,"spread":false},{"title":"hyperparameter_evolution.md <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"clearml_logging_integration.md <span style='color:#111;'> 10.85KB </span>","children":null,"spread":false},{"title":"ray-tune.md <span style='color:#111;'> 10.85KB </span>","children":null,"spread":false},{"title":"comet_logging_integration.md <span style='color:#111;'> 10.83KB </span>","children":null,"spread":false},{"title":"neural_magic_pruning_quantization.md <span style='color:#111;'> 10.76KB </span>","children":null,"spread":false},{"title":"test_time_augmentation.md <span style='color:#111;'> 10.72KB </span>","children":null,"spread":false},{"title":"yolov5.md <span style='color:#111;'> 10.69KB </span>","children":null,"spread":false},{"title":"tensorboard.md <span style='color:#111;'> 10.41KB </span>","children":null,"spread":false},{"title":"amazon-sagemaker.md <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false},{"title":"clearml.md <span style='color:#111;'> 10.24KB </span>","children":null,"spread":false},{"title":"model_ensembling.md <span style='color:#111;'> 10.15KB </span>","children":null,"spread":false},{"title":"android.md <span style='color:#111;'> 10.04KB </span>","children":null,"spread":false},{"title":"running_on_jetson_nano.md <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"weights-biases.md <span style='color:#111;'> 9.95KB </span>","children":null,"spread":false},{"title":"workouts-monitoring.md <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"fast-sam.md <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"hyperparameter-tuning.md <span style='color:#111;'> 9.66KB </span>","children":null,"spread":false},{"title":"cli.md <span style='color:#111;'> 9.49KB </span>","children":null,"spread":false},{"title":"torchscript.md <span style='color:#111;'> 9.37KB </span>","children":null,"spread":false},{"title":"dvc.md <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"export.md <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"neural-magic.md <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"comet.md <span style='color:#111;'> 8.82KB </span>","children":null,"spread":false},{"title":"vision-eye.md <span style='color:#111;'> 8.63KB </span>","children":null,"spread":false},{"title":"model_pruning_and_sparsity.md <span style='color:#111;'> 8.63KB </span>","children":null,"spread":false},{"title":"queue-management.md <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"tf-savedmodel.md <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"paddlepaddle.md <span style='color:#111;'> 8.47KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 8.43KB </span>","children":null,"spread":false},{"title":"datasets.md <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明