用python实现的 朴素贝叶斯代码,参考资料是李航写的<>这本书
2021-11-10 19:00:49 2KB python naive_bayes
1
使用机器学习预测足球比赛结果:在Jupyter Notebook中使用机器学习算法进行足球比赛预测
1
基于网络的入侵检测系统:基于网络入侵检测系统的最后一年项目
1
针对数据库用户行为异常导致数据库泄露问题,提出了一种基于K-means和naive Bayes算法的数据库用户异常检测方法。首先,利用数据库历史审计日志中用户的查询语句与查询结果,采用K-means聚类方法得到用户的分组;然后,使用naive Bayes分类算法构造用户异常检测模型。与单独使用naive Bayes分类法构造的模型相比,在数据预处理时其精简了用户行为轮廓的表示方法,降低了计算冗余,减少了81%的训练时间;利用K-means聚类方法得到用户组别,使检测的精确率提高了7.06%,F1值提高了3.33%。实验证明,所提方法大幅降低了训练时间,取得了良好的检测效果。
2021-10-15 15:32:32 1.03MB 数据库 用户行为 异常检测
1
最大似然估计、最大后验概率估计、贝叶斯估计、朴素贝叶斯方法的区别
2021-09-23 15:18:50 391KB MLE MAP 贝叶斯
1
推文情感分析 更新(2018年9月21日):我没有积极维护该存储库。 这项工作是针对课程项目完成的,由于我不拥有版权,因此无法发布数据集。 但是,可以轻松修改此存储库中的所有内容以与其他数据集一起使用。 我建议阅读该的,该可在docs/找到。 数据集信息 我们使用和比较各种不同的方法来对推文(二进制分类问题)进行情感分析。 训练数据集应该是tweet_id,sentiment,tweet类型的csv文件tweet_id,sentiment,tweet其中tweet_id是标识该tweet的唯一整数, sentiment是1 (正)或0 (负), tweet是括在""的tweet 。 类似地,测试数据集是tweet_id,tweet类型的csv文件。 请注意,不需要csv标头,应将其从训练和测试数据集中删除。 要求 该项目有一些一般的图书馆要求,而某些则是针对个别方法的。 一般要求如下。 numpy scikit-learn scipy nltk 某些方法特有的库要求是: 带TensorFlow后端的keras ,用于Logistic回归,MLP,RNN(LSTM)和CNN
2021-09-17 16:51:24 869KB python machine-learning sentiment-analysis keras
1
集合论的基本知识,入门级教程,不错的资源
2021-08-14 22:57:54 8.96MB Naive Set Theory
1
贝叶斯分类是统计学方法。他们可以预测类成员关系的可能性,如给定样本属于一个特定类的概率。贝叶斯分类主要是基于贝叶斯定理,通过计算给定样本属于一个特定类的概率来对给定样本进行分类。
2021-08-07 12:06:11 871KB 机器学习 朴素贝叶斯
这是我用python写的朴素贝页斯分类器(Naive Bayes classifier)
2021-04-25 08:53:47 20KB python 朴素贝页斯
1
python实现knn、naive bayes、vsm、tf-idf模型。并包含数据集
2021-04-19 22:12:54 40.90MB python knn naive bayes
1