Kaggle-SMS-Spam-Collection-Dataset-:使用NLTK和Scikit-learn分类为垃圾邮件或火腿邮件
1
天真贝叶斯垃圾邮件检测器 使用Scikit学习机器学习库将电子邮件分类为垃圾邮件或非垃圾邮件的Python程序。 先决条件 该程序是用Python 3编写的,并使用了Numpy,Pandas和Scikit-learn库。 数据集 该程序利用以csv格式存储的两个数据集。 主要数据集“垃圾邮件或非垃圾邮件”。 该集合是文件'20030228easyham.tar.bz2'和'20030228_spam.tar.bz2'的组合。 这组包含2500个火腿电子邮件示例和500个垃圾电子邮件示例。 该集合包含两列:电子邮件和标签。 电子邮件列中的元素是带有数字值和url的文本字符串,分别用单词“ NUMBER”和“ URL”替换。 标签列中的元素可以具有两个可能的值:如果电子邮件是非垃圾邮件,则为0;如果电子邮件是垃圾邮件,则为1。 辅助数据集包含伪造数据。 此集合遵循主要集合的样式; 两列用于
2023-01-02 22:17:54 1.15MB
1
Python机器学习 通用机器学习算法的Python代码
1
贝叶斯实现言论过滤器、过滤垃圾邮箱、新浪新闻分类
2022-12-09 23:37:35 200KB Naive Bayes
1
机器学习 Parag Singla教授教授的机器学习课程作业。 每个文件夹都包含问题说明,Python代码和最终报告(具有图形等)。 作业 线性回归 局部加权线性回归 逻辑回归 高斯判别分析 朴素贝叶斯 SVM(使用Pegasos和libsvm) 决策树 神经网络 K均值 PCA +支持向量机 PyTorch中的神经网络 在PyTorch / Keras中的CNN
2022-09-29 11:06:11 4.03MB machine-learning svm naive-bayes linear-regression
1
主要适用于机器学习初学者,掌握基础理论; 可以在高质量数据集上面,修改测试代码,更好的掌握 naive Bayes 分类器理论和实际应用; 理解分类器的实际价值和局限性所在。
2022-08-30 15:05:10 1.95MB 机器学习 贝叶斯分类器
1
数据集名称:成人自闭症谱系筛查数据 摘要:自闭症谱系障碍(ASD)是一种与显着的医疗费用有关的神经发育疾病,早期诊断可以显着减少这些疾病。 不幸的是,等待ASD诊断的时间很长,而且程序的成本效益也不高。 自闭症的经济影响和全世界ASD病例数量的增加表明,迫切需要开发易于实施和有效的筛查方法。 因此,迫切需要进行时间高效且可访问的ASD筛查,以帮助卫生专业人员并告知个人是否应进行正式的临床诊断。 全球ASD病例数的快速增长需要与行为特征相关的数据集。 但是,这样的数据集很少,因此很难进行全面的分析以提高ASD筛选过程的效率,敏感性,特异性和预测准确性。 目前,与临床或筛查有关的自闭症数据集非常有限,并且大多数都是自然遗传的。 因此,我们提出了一个与成人自闭症筛查有关的新数据集,其中包含20个特征,可用于进一步分析,特别是在确定有影响力的自闭症特征和改善ASD病例分类方面。 在此数据集中,我们
1
机器学习第二版中Tom准备增加的内同,关于生成模型、判别模型以及朴素贝叶斯和逻辑回归的介绍,在作者主页下载的
2022-05-05 17:04:01 133KB 机器学习
1
朴素贝叶斯数字分类器 基于平均像素亮度和标准偏差的手写数字0或1的朴素贝叶斯分类器 2020年9月 ASU MCS计划课程CSE 575的项目1-统计机器学习 使用的技术: Python,Numpy,Scipy
2022-04-18 20:33:56 129KB Python
1
一个简单自己写的朴素贝叶斯分类器
2022-03-31 19:21:49 2KB python naive_bayes sklearn
1