层次聚类算法描述
2021-12-20 22:19:55 3KB 层次聚类 hierarchical clustering
1
Hierarchical Dirichlet Proces HDP 代码 matlab
2021-12-04 15:11:34 27KB Hierarchical Dirichlet Proces
1
用于从 RGB 图像重建光谱的分层回归网络 NTIRE 2020 团队 OrangeCat 光谱重建挑战的 README 文件:用于从 RGB 图像重建光谱的分层回归网络。 我们的方法在轨道 2 中获得了第一名:真实世界的图像。 论文可下载: : HRNet架构 主网络(不同层通过PixelShuffle和PixelUnShuffle连接): 主网建议使用的 ResDB 和 ResGB: 文件结构 NTIRE 2020 Spectral Reconstruction Challenge │ README.md │ validation*.py │ test*.py │ ensemble*.py │ └───track1 (saving the trained models of track1) │ │ code1_G_epoch9000_bs8.pth │
2021-11-30 19:28:05 53.21MB JupyterNotebook
1
[PYTORCH]用于文档分类的分层注意网络 介绍 下面是我的文件分层关注网络的文档分类描述的模型的pytorch实现。 Dbpedia数据集模型输出结果的应用程序演示示例。 我的模型对Dbpedia数据集的性能示例。 如何使用我的代码 使用我的代码,您可以: 使用任何数据集训练模型 给定我训练有素的模型或您的模型,您可以评估具有相同类集的任何测试数据集 运行一个简单的Web应用进行测试 要求: python 3.6 火炬0.4 张量板 tensorboardX (如果不使用SummaryWriter,则可以跳过此库) 麻木 数据集: 我用于实验的数据集的统计信息。 这些数
2021-11-26 21:50:56 49.66MB python nlp deep-neural-networks deep-learning
1
PyTorch-HITNet分层迭代瓷砖精加工网络,用于实时立体声匹配 使用PyTorch的HITNet实施 这是一个包含实现Google论文HITNet的代码的存储库:用于实时立体匹配的分层迭代切片优化网络 该项目是初始版本,可以训练和测试模型,但可能包含一些错误,需要进一步修改和调试。 如果您发现有关我的代码的任何问题,请打开问题或尽快与我联系( )。 当前,该项目无法复制原始论文中报告的准确性和速度。 在速度方面,官方实现使用其优化的cuda op来加速参考和培训。(请参考其,该尚未包含模型代码)。 感谢弗拉基米尔·坦科维奇(Vladimir Tankovich)的帮助,他与他的团队一起提出了这个强大的立体声网络,并为我提供了许多原始论文的细节和说明。 另外,我还要感谢@ xy-guo,他提出了出色的 ,因为代码是从他的存储库中部分借用的。 要求 Pytorch = 1.1
2021-11-10 17:32:00 36KB Python
1
k-均值聚类和层次聚类 电影评分的k均值聚类 层次聚类
2021-11-08 08:57:26 2.52MB JupyterNotebook
1
基于地图的视觉本地化 基于地图的视觉本地化的通用框架。 它包含了 支持传统功能或深度学习功能的地图生成。 视觉(点或线)地图中的Hierarchical-Localizationvisual。 具有IMU,车轮Odom和GPS传感器的融合框架。 我将发布一些相关论文,并在基于地图的视觉本地化中介绍工作。 我想介绍会先用中文写。 因此,快来了,让我们开始吧。 随缘持续更新中!! 2020.09.19添加了微小贡献的github repo链接 2020.09.19添加了第五章的部分内容 2020.09.04添加文章结构 [目录] 基于地图的视觉定位 根据已知地图的视觉定位是一个比较大的问题,基本上会涉及到slam系统,重定位,图像检索,特征点提取及匹配,多传感器融合领域。 0.写在前面 作者:钟心亮 在写本文之前,我想先简单的总结一下历年用的比较多的slam系统,另外会提出一些开
2021-11-01 16:54:42 38.56MB gps triangulation imu sensor-fusion
1
分层潜在Dirichlet分配 分层潜在狄利克雷分配(hLDA)解决了从数据中学习主题层次结构的问题。 该模型依赖于称为嵌套中国餐厅过程的非参数先验,该过程允许任意大的分支因子,并可以轻松容纳不断增长的数据收集。 hLDA模型将此先验与基于潜在Dirichlet分配的分层变体的可能性相结合。 执行 是用于hLDA推断的Gibbs采样器,基于的实现,在nCRP树上具有固定的深度。 安装 只需使用pip install hlda即可安装该软件包。 可以在找到一个示例笔记本,该笔记本可以推断BBC Insight语料库上的层次结构主题。
1
Behavior Trees for Hierarchical RTS AI
2021-09-23 19:03:00 4.21MB RTS 行为树
1
语音带宽扩展的分层递归神经网络 论文代码: Ling Zhen-Hua Ling,Yang Ai,Yu Gu和Dai Li-Rong Dai,“使用分层递归神经网络进行语音带宽扩展的波形建模和生成”,关于音频,语音和语言处理的IEEE / ACM交易,第一卷。 26号5,第883-894页,2018年。 ./HRNN_HF是本文中HRNN系统的代码。 ./CHRNN_HF是本文中的CHRNN系统的代码。
2021-09-14 19:51:23 78KB Python
1