心电信号的处理,包括低通滤波器滤除肌电信号,带陷滤波器抑制工频干扰,以及IIR零相移数字滤波器纠正基线漂移。
包含肌电信号相关的关节力矩计算,步态分析等相关论文,欢迎大家下载!
2022-03-13 23:17:57 173KB 肌电信号
1
初步了解支持向量机,支持向量机的入门程序,和用于肌电信号模式识别的入门程序。
2022-03-09 12:00:23 216KB 支持向量机 SVM 肌电信号 模式识别
1
本文设计了一种无线多通道表面肌电信号(surface electromyography,SEMG)采集系统,该系统包括多通道的无线传感器和信号接收部分。传感器可独立的穿戴于人体表面,以线形差分电极获取表面肌电信号,对其进行放大、滤波、A/D变换,并用无线的方式按本文设计的通信协议发送给接收部分。接收部分对各传感器的数据进行整合,并通过USB接口传输给电脑进行存储、显示和处理。每个传感器体积为35mm×20mm×11mm,重量仅13g(含电池),一次充电可工作9个小时,无线通信距离达7.5m,采集到的信号噪声低于-70dB(肌电信号1mV代表0dB)。该设计大大提高了电极安放的便利性,采集设备的便携性与人体的安全性,且避免了工频干扰,能够满足基于表面肌电信号的手势或姿势识别等研究的要求。
2022-03-02 22:01:55 126KB 无线 多通道 表面肌 电信号采集
1
主要针对matlab的平均频率和平均功率频率,也可以进行对EMG信号数据进行计算
1
本文设计了一种无线多通道表面肌电信号(surface electromyography,SEMG)采集系统,该系统包括多通道的无线传感器和信号接收部分
2021-12-28 16:21:17 835KB LabVIEW
1
针对表面肌电信号(SEMG)的非平稳性及小波包变换系数维数过高的问题,提出一种小波包主元分析和线性判别分析相结合的表面肌电信号动作特征识别新方法。以表面肌电信号用于智能轮椅为例,对采集到的两路SEMG信号进行小波包主元分析,提取SEMG信号的运动特征矩阵,并将运动特征矩阵输入到线性判别分类器进行分类,实现了前臂动作识别。试验表明:该方法能够将小波包系数矩阵由16维降到4维,并且对前臂的四种动作模式(握拳、展拳、手腕内翻和手腕外翻)的平均正确识别率达98%,与传统的小波包变换相比有较高的识别率。
1
基于表面肌电信号(sEMG)的手势识别技术是人机自然交互领域的重要研究方向。手势识别技术的实现关键在于如何提取sEMG信号的有效特征。提出了一种提取sEMG信号稀疏特征用于多类手势识别的有效方法。该方法以稀疏表示作为特征提取工具,以支持向量机(SVM)作为分类器对多个手势进行识别。首先,采用双阈值法检测分割出手势动作的活动段;其次随机抽取部分运动段样本初始化稀疏表示词典,利用KSVD方法对过完备字典和稀疏系数进行无监督更新;最后,利用SVM对稀疏系数特征向量进行分类以实现对不同手势的识别。通过在公开数据库和自有数据库上进行实验测试,结果表明结合稀疏特征和SVM分类方法可实现16种手势平均识别准确率达到98.4%。
2021-11-30 11:09:14 778KB 表面肌电信号sEMG
1
肌电信号】脉搏信号分析(去噪+特征提取)matlab 源码含GUI.md
2021-11-26 11:27:01 13KB 算法 源码
1