计算流体力学程序源码,用于模拟方腔顶盖驱动流,SIMPLE算法,由C++语言编写,分别采用高斯-赛德尔迭代和雅各比迭代进行对比。项目中包含Makefile文件,可使用make命令编译。
2024-11-14 12:07:52 6KB 计算流体力学 SIMPLE算法
1
金豺优化算法(Golden Jackal Optimization Algorithm, GJO)是一种基于动物社会行为的全局优化算法,灵感来源于金豺群体在捕猎过程中的协同策略。在自然界中,金豺以其高效的合作方式来寻找和捕获猎物,这种智能行为启发了算法设计者。金豺优化算法在解决复杂多模态优化问题时表现出强大的性能,广泛应用于工程、数学、计算机科学等领域。 Python作为一门流行的编程语言,拥有丰富的库和工具,非常适合用于实现各种优化算法,包括金豺优化算法。Python的简洁语法和易读性使得代码易于理解和维护,这对于学习和应用GJO算法非常有利。 在Python中实现金豺优化算法,通常会包含以下几个关键步骤: 1. **初始化种群**:我们需要生成一组随机解,代表金豺群体的初始位置。这些解通常是在问题的可行域内随机分布的,每个解代表一个潜在的解决方案。 2. **计算适应度值**:根据目标函数,计算每只金豺的适应度值。适应度值越高的金豺代表其解的质量越好。 3. **确定领导金豺**:选取适应度值最高的金豺作为领导者,它将指导其他金豺进行搜索。 4. **社会互动**:模拟金豺间的协作和竞争。群体中的其他金豺会尝试接近领导者,但同时避免过于接近导致的资源冲突。这通常通过计算与领导者之间的距离和动态更新位置来实现。 5. **捕食行为**:金豺会根据捕食策略调整自己的位置,这通常涉及到对当前位置的微调和对领导者位置的追踪。 6. **更新种群**:在每次迭代后,更新金豺的位置,并依据一定的概率剔除低适应度的个体,引入新的随机解以保持种群多样性。 7. **迭代与终止条件**:算法持续运行,直到满足停止条件,如达到最大迭代次数或适应度值收敛到一定阈值。 在实际应用GJO算法时,需要注意以下几点: - **参数设置**:算法的性能很大程度上取决于参数的选择,例如种群大小、迭代次数、学习率等。需要通过实验和调整找到合适的参数组合。 - **适应度函数**:适应度函数应根据具体优化问题设计,反映目标函数的特性。 - **边界处理**:确保金豺的搜索范围限制在问题的可行域内,防止超出边界。 - **并行化**:利用Python的并行计算库如`multiprocessing`或`joblib`可以加速算法的执行。 了解并掌握金豺优化算法的Python实现,不仅可以提升优化问题求解的能力,也有助于理解其他生物启发式算法的工作原理。在实践中,可以结合其他优化技术,如遗传算法、粒子群优化等,实现更高效的优化策略。
2024-11-13 20:34:18 1.88MB python
1
标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单点或多点驾驶员模型”是模拟驾驶员行为的不同方法。单点模型通常简化驾驶员为一个点,考虑其对车辆输入的影响,而多点模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1
RLE(Run-Length Encoding)算法,全称为行程长度编码,是一种简单且常见的数据压缩方法。在图像处理、文本压缩等领域有着广泛的应用。该算法的基本思想是寻找连续出现的相同字符或颜色像素,并用一个字符(通常是该重复字符)加上其出现次数来表示这一序列,从而减少数据量。 在RLE算法中,主要分为两个步骤:编码和解码。 1. **编码过程**: - 遍历输入的数据序列,每次遇到连续重复的元素,就记录这个元素和它的连续重复次数。 - 例如,对于字符串"AAABBBCCCC",经过RLE编码后会变成"A3B3C4",其中数字3和4分别表示'A'和'B'连续出现了3次,'C'出现了4次。 - 当遇到不同的元素时,将其写入输出序列,同时记录其重复次数。 - 在编码过程中,需要注意的是,如果某个元素只出现一次,那么在编码结果中通常会直接保留该元素,而不是用“元素+1”的形式表示。 2. **解码过程**: - 解码时,读取编码后的数据,遇到数字前的字符,就连续写入相应数量的该字符到输出序列。 - 例如,解码"A3B3C4",会得到原始的"AAABBBCCCC"字符串。 - 对于只有一个字符的情况,直接将字符写入输出,不考虑数字部分。 RLE算法的优势在于其简单易实现,特别适合处理大量重复元素的数据。然而,对于没有明显重复模式的数据,RLE的压缩效果可能不佳。此外,由于RLE编码通常会产生非均匀分布的压缩数据,因此它不适合作为通用的压缩算法,而是更适合预知数据有大量重复特性的场景。 在"RLETest小工具"中,可能包含了用于实现RLE编码和解码功能的程序或脚本。用户可以通过这个工具对含有大量重复元素的数据进行压缩和解压缩操作,以减少存储空间或提高传输效率。使用此类工具时,用户只需提供原始数据,工具会自动执行RLE算法,生成压缩后的数据,同时也能从压缩数据中恢复原始内容。 总结起来,RLE算法是一种简单但实用的数据压缩技术,尤其适用于存在大量重复元素的数据。"RLETest小工具"则提供了方便用户操作RLE算法的界面或命令行工具,帮助用户进行数据的压缩与解压缩。在实际应用中,了解并掌握RLE算法的原理和使用,能有效地优化特定场景下的数据处理。
2024-11-12 23:15:44 6KB RLE算法
1
C语言实现SHA-224/SHA-256/SHA-384/SHA-512摘要算法。编译环境:VS2010。请参考我的博客: SHA-224:https://blog.csdn.net/u013073067/article/details/86605223 SHA-256:https://blog.csdn.net/u013073067/article/details/86600777 SHA-384:https://blog.csdn.net/u013073067/article/details/86613045 SHA-512:https://blog.csdn.net/u013073067
2024-11-12 20:32:41 566KB 摘要算法 SHA224 SHA256 SHA384
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。SHA(Secure Hash Algorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。 SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。 在C++中实现SHA512算法,首先需要理解其基本步骤: 1. **初始化**:设置一组初始哈希值(也称为中间结果)。 2. **预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。 3. **主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。 4. **结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。 C++代码实现时,可以使用位操作、数组和循环来完成这些计算。为了简化,可以使用`#include `中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。同时,可以利用`#include `中的`memcpy`和`memset`函数来处理内存操作。此外,`#include `和`#include `库可用于将二进制数据转换成16进制字符串。 以下是一个简化的C++ SHA512实现框架: ```cpp #include #include #include #include #include // 定义常量和初始化哈希值 const std::array kInitialHashValues {...}; std::array hashes = kInitialHashValues; // 主循环函数 void ProcessBlock(const uint8_t* data) { // 扩展、混合、压缩和更新中间结果 } // 输入数据的处理 void Preprocess(const std::string& input) { // 添加填充和特殊位 } // 将摘要转换为16进制字符串 std::string DigestToHex() { // 转换并返回16进制字符串 } // 使用示例 std::string message = "Hello, World!"; Preprocess(message); const uint8_t* data = reinterpret_cast(message.c_str()); size_t dataSize = message.size(); while (dataSize > 0) { if (dataSize >= 128) { ProcessBlock(data); dataSize -= 128; data += 128; } else { // 处理剩余数据 } } std::string result = DigestToHex(); ``` 这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。此外,为了提高效率,可能还需要使用SIMD(Single Instruction Multiple Data)指令集或其他优化技术。 SHA512算法在多种场景下具有广泛的应用,如: - **文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。 - **密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。 - **数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。 了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2024-11-12 20:26:45 2.14MB 加密算法
1
武永卫教授的《图算法》课程(2014年)是清华大学计算机科学与技术专业的一门重要课程。课程内容涵盖了图论的基本概念和算法,包括图的表示、遍历算法(如深度优先搜索和广度优先搜索)、最短路径算法(如Dijkstra算法和Bellman-Ford算法)等。这门课程的讲义(PPT)详细介绍了图算法的核心理论、实际应用以及算法的实现细节,旨在帮助学生深入理解图结构的处理方法,并能够在实际问题中应用这些算法。
2024-11-12 12:54:45 2.27MB
1
Dijkstra算法和图结构表示 Dijkstra算法是一种常用的图搜索算法,用于计算图中的一条最短路径。该算法的主要思想是从图的某个顶点出发,逐步扩展到其他顶点,直到找到目标顶点的最短路径。 在本节中,我们将详细讲述Dijkstra算法的实现过程,并提供C#语言的代码实现。 我们需要了解图的基本概念。图是一种非线性数据结构, 由顶点和边组成。图可以用来表示各种复杂关系,例如社交网络、交通网络、计算机网络等。 图的表示方法有多种,常见的有邻接矩阵方法、邻接表方法和邻接数组方法。其中,邻接矩阵方法将图表示为一个矩阵,其中每个元素表示两个顶点之间的边的存在性和权重。邻接表方法将图表示为一个表,其中每个顶点对应一个列表,列表中存储了该顶点的邻接顶点。邻接数组方法将图表示为一个数组,其中每个元素表示一个顶点的邻接顶点。 在Dijkstra算法中,我们使用邻接矩阵方法来表示图。该方法可以快速地计算图中的最短路径。 下面是Dijkstra算法的实现代码: ```csharp static public int[] Dijkstra(int[,] matrix, int start) { int n = matrix.GetUpperBound(0) + 1; // 顶点数目 = 最大下标 +1 if (start >= n || n < 2 || n != matrix.GetUpperBound(1) + 1) return null; bool[] final = new bool[n]; // 是否找到最短距离 int[] distance = new int[n]; // 当前最短距离 for (int i = 0; i < n; i++) { final[i] = false; distance[i] = matrix[start, i]; if (distance[i] == 0) distance[i] = int.MaxValue; } final[start] = true; distance[start] = 0; for (int i = 0; i < n; i++) { int pos = -1, min = int.MaxValue; // 寻找最小值 for (int j = 0; j < n; j++) { if (!final[j] && (pos < 0 || distance[j] < min)) { pos = j; min = distance[j]; } } if (pos < 0) break; final[pos] = true; // 修改距离 for (int j = 0; j < n; j++) { if (!final[j] && matrix[pos, j] != 0 && min + matrix[pos, j] < distance[j]) { distance[j] = min + matrix[pos, j]; } } } return distance; } ``` 该算法的主要思想是从图的某个顶点出发,逐步扩展到其他顶点,直到找到目标顶点的最短路径。在算法的实现过程中,我们使用了三个数组:final数组用于标记已经找到最短距离的顶点,distance数组用于存储当前最短距离,paths数组用于存储顶点的邻接顶点。 在算法的第一步,我们初始化final数组和distance数组。然后,我们使用循环来寻找图中的最短路径。在每次循环中,我们寻找当前最小的距离,并将其标记为已经找到最短距离的顶点。我们返回最短路径的结果。 Dijkstra算法是一种高效的图搜索算法,广泛应用于计算机科学和其他领域中。
2024-11-12 12:53:44 448KB 最短路径--Dijkstra算法
1
人工智能导论模型与算法吴飞pdf 人工智能:模型与算法教学大纲 从逻辑推理、搜索求解、监督学习、无监督学习、深度学习、强化学习和博 弈对抗介绍人工智能基本概念和模型算法,帮助学习者了解人工智能历史、趋势、 应用及挑战,掌握人工智能在自然语言理解和视觉分析等方面赋能实体经济的手 段。 课程概述 人工智能(Artificial Intelligence,简称 AI)是以机器为载体所展示出来的人类智 能,因此人工智能也被称为机器智能(Machine Intelligence)。对人类智能的模拟可 通过以符号主义为核心的逻辑推理、以问题求解为核心的探询搜索、以数据驱动 为核心的机器学习、以行为主义为核心的强化学习和以博弈对抗为核心的决策智 能等方法来实现。 本课程成体系介绍人工智能的基本概念和基础算法,可帮助学习者掌握人工 智能脉络体系,体会具能、使能和赋能,从算法层面对人工智能技术“知其意, 悟其理,守其则,践其行”。课程内容包括如下:人工智能概述、搜索求解、逻 辑与推理、监督学习、无监督学习、深度学习、强化学习、博弈对抗。 人工智能不单纯是一门课程、一手技术、一项产品或一个应用,而是理论 《人工智能导论:模型与算法》是吴飞教授的一本专著,该书详细阐述了人工智能的基本概念和核心算法,旨在帮助读者理解人工智能的历史、发展趋势、应用及其面临的挑战。本书覆盖了从逻辑推理到强化学习等多个关键领域的知识,旨在使学习者能够掌握人工智能的核心原理,并能在实践中运用。 课程首先介绍了人工智能的概述,包括可计算思想的起源、AI的发展历程以及研究的基本内容。接下来,课程深入讨论了搜索求解策略,如启发式搜索、对抗搜索和蒙特卡洛树搜索,这些都是解决问题的关键工具。 逻辑与推理部分涵盖了命题逻辑和谓词逻辑,以及知识图谱推理算法,如一阶归纳推理和路径排序算法,这些内容在知识表示和推理中起到重要作用。因果推理的讲解则帮助学习者理解如何从数据中发现因果关系。 统计机器学习部分分别探讨了监督学习和无监督学习。在监督学习中,介绍了机器学习的基本概念、线性回归分析以及提升算法。无监督学习部分涉及K均值聚类、主成分分析和特征人脸算法,这些都是数据分析和模式识别的重要方法。 深度学习是现代AI的热点,课程涵盖了深度学习的基础概念,如前馈神经网络和误差反向传播,以及卷积神经网络的应用,特别是在自然语言处理和视觉分析中的角色。 强化学习是让机器通过与环境交互自我学习的方法,课程讲解了强化学习的基本定义、策略优化、Q Learning以及深度强化学习,这些都是智能决策系统的关键。 博弈论部分介绍了人工智能在决策和策略制定中的应用,包括博弈的相关概念、遗憾最小化算法和虚拟遗憾最小化算法,同时也关注了人工智能安全的问题。 课程讨论了人工智能的发展与挑战,如记忆驱动的智能计算、可计算社会学,并对当前AI面临的若干挑战进行了分析。 课程还设置了丰富的实践环节,如基于搜索求解的黑白棋AI算法、线性回归的图像恢复和深度学习的垃圾分类等,以提高学生的实际操作能力。 预备知识包括线性代数和概率论的基本概念,以及一定的编程能力。参考书籍包括吴飞教授的《人工智能导论:模型与算法》和《人工智能初步》。 这门课程全面且深入地介绍了人工智能的理论和实践,不仅提供了理论框架,还强调了算法的理解和应用,是学习人工智能的宝贵资源。
2024-11-07 19:52:29 198KB 人工智能
1
双目测距算法实现源码,基于C++和OpenCV实现,处理流程如下: 1.读取相机内参 2.计算立体校正参数 3.计算映射矩阵 4.设置SGBM立体匹配算法参数 5.获取双目相机左右摄像头实时视频数据,并分别保存为左侧、右侧图像 6.对获取的相机图像进行立体校正 7.灰度化 8.基于SGBM算法计算视差图 9.视差图转换为深度图
2024-11-06 18:25:04 133KB 双目测距 立体视觉 OpenCV 立体匹配
1