首先对深度学习的发展历史以及概念进行简要的介绍。然后回顾最近几年基于深度学习的语音识别的研究进展。这一部分内容主要分成以下5点进行介绍:声学模型训练准则,基于深度学习的声学模型结构,基于深度学习的声学模型训练效率优化,基于深度学习的声学模型说话人自适应和基于深度学习的端到端语音识别。最后就基于深度学习的语音识别未来可能的研究方向进行展望。
1
深度神经网络模型采用VGG16训练出单词嵌入的模型,内含详细代码步骤介绍
1
系统日志反映了系统运行状态,记录着系统中特定事件的活动信息,快速准确地检测出系统异常日志,对维护系统安全稳定具有重要意义。提出了一种基于GRU神经网络的日志异常检测算法,基于log key技术实现日志解析,利用执行路径的异常检测模型和参数值的异常检测模型实现日志异常检测,具有参数少、训练快的优点,在取得较高检测精度的同时提升了运行速度,适用于大型信息系统的日志分析。
2021-11-29 18:41:35 2.24MB 日志异常检测 深度学习 GRU神经网络
1
深度学习与神经网络入门必看中文版,基本上是入门你必看的第一本书,网上的原版是英文的这是别人翻译好的,从github上下的,上传到这里是希望挣点积分,有很多积分的可以贡献一点。谢谢。
2021-11-25 21:23:43 3.59MB 深度学习
1
简单人工神经网络(ANN) 关于案例研究 在此业务案例研究中,我们预测了银行客户的流失率。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。从数百万的客户中,我们随机选择了1万个客户。 我们将使用客户的特征来确定他/她离开银行的可能性。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。 此外,我们将使用流行的Python库(例如Tensorflow,Keras)和机器学习技术(例如Adam Optimizer)来训练ANN模型并预测客户流失率。 数据:客户数据存储在: 论文:ANN案例研究论文: 研究论文 代码:Artificial_Neural_Network_Case_Study.py SAMPLE_OUTPUT = ANN_Case_Study_Sample_Output_1.png SAMPLE_OUTPUT = ANN_C
2021-11-10 20:14:17 2.57MB data-science machine-learning deep-learning python3
1
机器学习学习资料,BP神经网络详解,完整、深度讲解 PPT。
2021-11-07 10:06:06 932KB 机器学习 深度学习 BP 神经网络
1
本资源为深度学习交通流量预测的实战项目,其中包含了用LSTM,GRU以及CNN来进行流量预测的相关源码,整个项目的过程集数据预处理、模型训练与测评,性能展示于一体,代码结构良好,易于阅读,且在CSDN有本人相应的博客说明。
卷积神经网络用到的数据集图片、训练好的权重等参数文件
2021-09-25 08:33:35 822.47MB CNN 深度学习 循环神经网络 猫狗图片
1
神经网络搭建 -【可以直接运行】 python代码 可以自行设置神经网络层数 可以自行设置每层的神经元个数 超参数是参考
2021-09-07 11:05:22 4KB 深度学习 python 神经网络 代码
1
代码源自《Learning to Dispatch for Job Shop scheduling via Deep Reinforcemnet Learning》
1