BOM建议直接使用原理图,BOM只供参考 支持QI协议的无线充电接收端芯片 可编程的3.5-9V输出电压 5W BPP 无线功率接收 Rx 极简的电路设计解决方案:1 个线圈+1 片 NU1680 + 12 颗外围器件 无固件烧入,可节省研发和生产时间和资源 去除了同步整流桥上的自举电容,使成本更低 具备 I2C 功能,可通过它配置 FOD 等寄存器参数 小尺寸,16 脚 QFN 封装,3.0mm x 3.0mm,脚间距 0.5mm 原理图和BOM可点绑定资源下载,LC部分电容建议X7R。
2025-07-21 20:25:02 56KB 无线充电
1
在电子工程领域,51单片机是一种广泛应用的微控制器,因其简单易用且成本低廉而受到欢迎。本文将深入探讨如何基于51单片机实现SPI(Serial Peripheral Interface)通信,并将接收到的数据通过LCD(Liquid Crystal Display)屏幕进行显示。 SPI是一种全双工、同步串行通信协议,常用于连接微控制器与外围设备,如LCD显示屏、传感器、闪存等。在SPI通信中,51单片机通常作为主设备,负责发起数据传输,而LCD则作为从设备,响应并处理主设备发送的指令。 51单片机进行SPI通信时,需要配置相关的引脚,包括SCK(时钟信号)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和SS(从设备选择)。这些引脚的电平变化控制着数据的发送和接收。在代码编程中,我们需设置相应的寄存器,如SPI控制寄存器和状态寄存器,来初始化SPI接口。 接着,我们将数据发送到LCD。LCD显示通常分为点阵液晶显示和字符型液晶显示,这里我们假设是点阵液晶显示,因为其可以更灵活地显示各种字符和图形。LCD通常有自己的指令集,如清屏、设置光标位置、写入数据等。主控器需要按照特定的时序发送这些指令,通过SPI接口传送到LCD。 在51单片机中,我们先要初始化SPI接口,设置好波特率、数据格式和从设备选择信号。然后,通过循环或中断的方式,将LCD显示指令通过MOSI引脚发送出去,并通过SCK引脚控制时钟脉冲。当接收到从设备的响应(通过MISO引脚)时,表示数据已经成功传输。 在接收到SPI数据后,这些数据通常代表要显示的字符或像素点。为了在LCD上正确显示,我们需要将这些数据转化为LCD可理解的格式,比如将ASCII码转换为液晶显示所需的点阵数据。然后,再次通过SPI接口,将这些点阵数据发送到LCD的RAM区域,指定相应的地址,以更新显示内容。 总结来说,基于51单片机的SPI发送接收并显示到LCD上涉及到以下关键步骤: 1. 配置51单片机的SPI接口,包括设置相关寄存器和引脚。 2. 初始化LCD,理解其指令集和数据格式。 3. 发送LCD显示指令,包括清屏、设置光标位置等。 4. 将接收到的SPI数据转化为LCD可显示的格式。 5. 将转换后的数据通过SPI接口写入LCD的RAM,更新显示内容。 通过这样的过程,我们可以实现一个简单的SPI通信系统,让51单片机能够有效地控制LCD显示,为嵌入式系统提供直观的用户界面。这个过程需要扎实的硬件基础知识和编程技巧,但一旦掌握,就能为各种应用提供强大的支持。在实际项目中,可能还需要考虑到电源管理、抗干扰措施以及实时性等因素,以确保系统的稳定性和可靠性。
2025-07-19 21:36:14 47KB 51单片机 SPI主从通信 LCD显示
1
新一代北斗卫星导航信号监测接收机仿真代码
2025-07-19 21:26:18 31KB
1
STM32L053是意法半导体(STMicroelectronics)推出的一款超低功耗微控制器,属于STM32L0系列。该芯片基于ARM Cortex-M0+内核,适用于电池供电的应用,如穿戴设备、传感器节点等。在I2C通信协议下,STM32L053能够作为主设备发送数据,以及作为从设备接收数据。在本程序中,我们关注的是硬件I2C接口的使用,特别是中断驱动的从机模式。 I2C(Inter-Integrated Circuit)是一种两线制串行总线,由飞利浦(现为恩智浦半导体)开发,用于连接微控制器和外围设备。它允许多个设备共享同一对数据线进行通信,减少了电路板上的布线需求。 在STM32L053中,硬件I2C接口通常由两个外设组成:I2C1和I2C2。它们提供了配置选项,如时钟频率、地址识别、中断使能等。为了实现I2C通信,我们需要设置以下步骤: 1. **初始化I2C外设**:配置时钟源、工作频率、数据速率(标准速或高速)、地址模式等。这通常在系统启动或模块初始化函数中完成。 2. **配置GPIO引脚**:STM32L053的I2C数据线(SDA)和时钟线(SCL)需要配置为推挽输出(用于主设备)和开漏输入(用于从设备)。还要开启内部上拉电阻,因为I2C协议要求外部设备具有上拉电阻。 3. **设置中断**:对于从设备,启用I2C接收中断是非常重要的。当从设备接收到主设备的数据时,中断会被触发,然后执行相应的处理函数。这通常涉及配置NVIC(Nested Vectored Interrupt Controller)以处理I2C中断。 4. **编程从设备地址**:I2C通信中,每个设备都有一个7位或10位的地址。在从设备端,我们需要设定自己的地址以便主设备可以寻址到。 5. **中断服务例程**:在中断服务例程中,你需要读取I2C接口的状态寄存器,判断当前是应答信号、数据接收还是其他事件。根据这些信息,决定如何响应并更新内部数据结构。 6. **数据传输**:I2C通信包括开始条件、地址字段、数据字段和停止条件。在中断接收模式下,主设备发送数据后,从设备会在中断中读取这些数据,并可能需要通过应答信号(ACK)确认接收到数据。 7. **错误处理**:I2C通信可能会出现错误,如超时、数据丢失或地址冲突。因此,中断服务例程需要检查错误标志,并采取适当措施,如重试传输或通知用户。 8. **关闭I2C**:在完成通信后,记得关闭I2C接口,释放资源,降低功耗。 在提供的"i2c_test"文件中,可能包含了实现这些功能的代码示例。通过阅读和理解这些代码,你可以学习如何在STM32L053上实现硬件I2C接口的发送和接收,特别是在中断驱动的从机模式下。记住,实践是检验理论的最好方式,通过编写和调试自己的I2C程序,你将更深入地理解这个重要的通信协议。
2025-07-14 14:59:59 5.06MB stm32
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-07-14 10:40:45 7.85MB matlab
1
[FreeRTOS+STM32CubeMX] 04 USART串口的DMA接收
2025-07-13 22:01:42 25MB USART_DMA
1
在Windows平台上,C++语言用于实现串口通信的程序设计是一项常见的任务,尤其在设备控制、数据采集等领域。本文将详细解析如何使用纯C++和Windows API来构建一个串口通信类,涵盖数据的发送与接收,以及串口事件的处理。 `SerialPort.h` 文件通常包含了串口通信类的定义,它可能包含如下的核心结构: 1. `class SerialPort`:这是串口通信类的主体,里面定义了各种成员变量,如`HANDLE`类型的`hComm`,用于保存打开的串口句柄;`DCB`结构体用于设置串口参数;`COMMTIMEOUTS`结构体用于设置超时策略。 2. 成员方法: - `Open`:用于打开指定端口号的串口。 - `Close`:关闭已打开的串口。 - `SetBaudRate`和`SetParity`等方法:设置串口的波特率、校验位等参数。 - `Write`:向串口发送数据,可能使用`WriteFile` API。 - `Read`:从串口读取数据,可能使用`ReadFile` API。 - `SetupSerial`:初始化串口参数,使用`BuildCommDCB`和`SetCommTimeouts` API。 接着,`ISerialPort.cpp` 文件实现了`SerialPort`类的接口,例如上述的成员方法。这里可能包含了Windows API的调用,如: - `CreateFile`:用于打开或创建串口,返回串口句柄。 - `GetCommState` 和 `SetCommState`:获取或设置串口的状态,包括波特率、数据位、停止位和校验位等。 - `EscapeCommFunction`:执行特定的串口控制操作,如清除输入缓冲区、设置DTR/RTS等。 - `PurgeComm`:清理串口的输入和输出缓冲区。 `SerialPortDll.vcxproj.user` 是Visual Studio项目用户特定配置文件,包含个人开发环境的设置,例如编译器选项、源代码路径等。 `SerialPortDll.aps` 是Visual Studio的中间文件,用于资源编译过程,通常不需要直接修改。 `resource.h` 包含了资源ID定义,可能有自定义对话框、菜单、图标等资源的ID。 `SerialPortDll.vcxproj.filters` 是项目过滤器文件,用于组织源代码文件在解决方案资源管理器中的显示方式。 `version_template.txt` 和 `GenerateVersion.bat` 通常是版本信息生成工具,用来自动更新程序的版本号。 `SubWCRev.exe` 可能是Subversion版本控制系统的一部分,用于从版本库中提取修订版本信息。 在实际应用中,串口通信类还需要处理串口事件,这可以通过创建一个消息循环并使用`WaitForSingleObject`或`PeekMessage`等API来监听`COMMSTATE`改变,触发相应的事件处理函数,例如数据到达、错误发生等。 这个C++项目提供了一个基础的串口通信框架,开发者可以根据需求扩展功能,例如添加错误处理机制、多线程读写支持、数据帧的校验和解析等。通过理解并利用Windows API,可以有效地控制串口,实现与其他设备的可靠通信。
2025-07-10 15:12:37 109KB 串口 windows
1
内容概要:本文详细介绍了315/433MHz无线遥控接收解码的具体实现方法和技术细节。首先,文章讲解了硬件部分的设计,包括SYN480R接收模块的使用以及与MCU连接的关键注意事项,如加入100K下拉电阻和104电容。接着,深入探讨了软件部分,涵盖GPIO初始化、中断服务函数、定时器配置、曼彻斯特解码算法、CRC校验等核心技术。此外,还分享了一些实用的调试技巧,如去抖动处理、动态阈值校准、信号强度检测等。最后,作者提供了完整的工程文件下载链接,并给出了一些优化建议,如使用LDO滤波、增加电容等。 适合人群:具有一定嵌入式开发经验的研发人员,尤其是对无线通信和射频技术感兴趣的技术爱好者。 使用场景及目标:适用于车库门、报警器、智能家居等低成本、低功耗的应用场景。主要目标是帮助开发者理解和掌握315/433MHz无线遥控系统的接收解码机制,提高系统的稳定性和可靠性。 其他说明:文中提供的代码和电路图均为实际项目中的真实案例,具有较高的参考价值。同时,作者还分享了许多实践经验,有助于解决实际开发过程中遇到的各种问题。
2025-07-04 11:43:12 2.11MB
1
内容概要:本文详细介绍了315/433MHz无线遥控接收解码的具体实现方法和技术细节。首先,文章讲解了硬件部分的设计,包括SYN480R接收模块的使用以及与MCU连接的关键注意事项,如加入100K下拉电阻和104电容。接着,深入探讨了软件部分,涵盖GPIO初始化、中断服务函数、定时器配置、曼彻斯特解码算法、CRC校验等核心技术。此外,还分享了一些实用的调试技巧,如去抖动处理、动态阈值校准、信号强度检测等。最后,作者提供了完整的工程文件下载链接,并给出了一些优化建议,如使用LDO滤波、增加电容等。 适合人群:具有一定嵌入式开发经验的研发人员,尤其是对无线通信和射频技术感兴趣的技术爱好者。 使用场景及目标:适用于车库门、报警器、智能家居等低成本、低功耗的应用场景。主要目标是帮助开发者理解和掌握315/433MHz无线遥控系统的接收解码机制,提高系统的稳定性和可靠性。 其他说明:文中提供的代码和电路图均为实际项目中的真实案例,具有较高的参考价值。同时,作者还分享了许多实践经验,有助于解决实际开发过程中遇到的各种问题。
2025-07-04 11:42:35 1.61MB
1
TI C2000系列微控制器是德州仪器(Texas Instruments)生产的一款专为实时控制应用设计的数字信号处理器(DSP)。F28002x作为其中的一个型号,以其高性能的处理能力、丰富外设接口及高精度的模拟特性,广泛应用于工业自动化、电机控制、太阳能逆变器等复杂控制场合。为了充分利用该芯片的功能,对其系统延时、通用输入输出(GPIO)配置以及串行通信接口(SCI,亦称为UART)的发送和接收进行深入理解和掌握显得尤为重要。 系统延时在微控制器应用中是必不可少的一个环节,无论是对于精确控制时序还是对于同步多任务操作来说都至关重要。在F28002x上实现系统延时,主要依赖于其内置的定时器模块。通过编程设置定时器的周期和计数值,可以实现毫秒级甚至微秒级的精确延时。此外,定时器还可以用于中断服务,以实现周期性的任务执行或者精确的时间控制。在使用定时器进行延时时,需要精确配置定时器控制寄存器,设置适当的预分频值以达到所需的分辨率。 GPIO配置是微控制器与外部世界交互的基础。F28002x提供了一系列的GPIO引脚,它们可以被配置为输入或输出模式,并且支持多种功能,如上拉/下拉电阻、驱动强度配置、中断产生等。对GPIO的配置包括设置GPIO模块的控制寄存器,选择相应的I/O功能,如用于普通I/O或用于特定外设的特殊功能。正确的配置GPIO不仅可以提高系统的稳定性和可靠性,还能实现更加灵活的硬件设计。 串行通信接口(SCI),又称为通用异步收发传输器(UART),是一种常见的串行通信协议。它允许微控制器与其他设备(如其他微控制器、PC机或模块)通过串行线进行数据通信。在F28002x上实现UART通信涉及到配置SCI模块的多个参数,例如波特率、数据位、停止位、校验位等。正确配置这些参数能够保证数据准确无误地发送和接收。SCI模块提供了中断服务程序,可以用来处理接收到的数据或者准备发送的数据,从而支持全双工通信。在实际应用中,通过编写相应的中断服务例程和数据处理代码,可以实现复杂的通信协议和数据处理功能。 针对F28002x的系统延时、GPIO配置和SCI串口通信,开发者需要深入学习和实践德州仪器提供的软件开发工具包(SDK),熟悉其提供的API函数,并在实际应用中合理使用。此外,针对C2000系列的开发,还应当关注德州仪器提供的应用笔记和示例代码,这些资源对于理解F28002x的性能和正确应用其功能至关重要。 实际开发中可能会遇到各种问题,例如配置错误导致的外设工作不正常、通信中断、数据丢失等。因此,开发者需要具备调试和故障诊断的能力,以便能够迅速定位问题并给出解决方案。德州仪器的集成开发环境(IDE),如Code Composer Studio(CCS),提供了丰富的调试工具,包括逻辑分析仪、实时数据监视和性能分析工具,这些工具对于提高开发效率和系统可靠性都有着极大的帮助。
2025-06-28 11:41:31 81KB DSP
1