【干货书】《因果推理导论-机器学习角度》,132页pdf 有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。 统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。 识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。 介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。 假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。
2021-08-20 01:38:05 979KB 机器学习
1
因果 因果推理课程
2021-08-18 17:05:26 3.26MB HTML
1
近年来,将传统的处理效果估计方法(如匹配估计器)和先进的表示学习方法(如深度神经网络)相结合的一个新兴的研究方向在广阔的人工智能领域引起了越来越多的关注。来自Georgia、Buffalo、阿里巴巴与Virginia的学者做了因果推理表示学习报告,在本教程中,介绍用于治疗效果估计的传统和最先进的表示学习算法。关于因果推论,反事实和匹配估计的背景也将被包括。我们还将展示这些方法在不同应用领域的应用前景。
2021-08-05 15:06:38 7.56MB CI
1
EconML:用于基于ML的异构处理效果估计的Python包 EconML是一个Python软件包,用于通过机器学习从观察数据中估计异构处理效果。 此软件包是作为Microsoft Research的一部分设计和构建的,目的是将最新的机器学习技术与计量经济学相结合,以使自动化解决复杂的因果推理问题。 EconML的承诺: 在计量经济学和机器学习的交集中实现文献中的最新技术 保持建模效果异质性的灵活性(通过诸如随机森林,增强,套索和神经网络之类的技术),同时保留对所学模型的因果解释,并经常提供有效的置信区间 使用统一的API 建立在用于机器学习和数据分析的标准Python软件包的基础上 机器学习的最大希望之一就是在众多领域中自动化决策。 许多数据驱动的个性化决策方案的核心是对异构处理效果的估计:对于具有特定特征集的样本,干预对感兴趣结果的因果关系是什么? 简而言之,该工具包旨在测量某些治疗变量T对结果变量Y的因果效应,控制一组特征X, W以及该效应如何随X 。 所实施的方法甚至适用于观测(非实验或历史)数据集。 为了使估计结果具有因果关系,有些方法假定没有观察到的混杂因素(即, X,
2021-07-24 09:25:45 17.34MB machine-learning economics econometrics causality
1
在ICML 2020上,我们发现基于因果推理(Causal Inference)相关的paper很多,因果推理,以及反事实等相关理论方法在CV、NLP都开始有相关的应用了,这个前沿的方法受到了很多人的关注。
2021-05-21 10:36:07 4MB ICML_2020 因果推理
1
适用于学习,为什么,提供了因果推理方面的研究,对计算机视觉、自然语言处理等深度学习领域有很大的帮助
2021-04-21 18:10:12 3.69MB thebookofwhy 为什么 因果推理 因果关系
1
因果推理是解释性分析的强大建模工具,它可使当前的机器学习变得可解释。如何将因果推理与机器学习相结合,开发可解释人工智能(XAI)算法,是迈向人工智能2.0的关键步骤之一。为了将因果推理的知识带给机器学习和人工智能领域的学者,我们邀请从事因果推理的研究人员,从因果推理的不同方面撰写了本综述。
2021-03-21 09:18:59 1.38MB 因果推理 综述
1
ICLR 采用公开评审,可以提前看到这些论文。本文发现基于因果推理(Causal Inference)相关的投稿paper很多,因果推理,以及反事实等相关理论方法在CV、NLP都开始有相关的应用了,这个前沿的方法受到了很多人的关注。
2021-02-26 16:57:51 21.86MB ICLR 因果推理
1