博文“基于flask+opencv+sklearn+tensorflow的人脸识别系统”对应的源代码,其中包括前端源代码和后端源代码。
2024-07-31 20:04:46 100KB flask opencv tensorflow tensorflow
1
在本项目中,我们将深入探讨如何使用OpenCV库在Python环境下进行人脸识别。OpenCV(开源计算机视觉库)是一个强大的图像处理和计算机视觉工具,广泛应用于各种领域,包括人脸识别。在这个项目中,我们将涵盖以下几个关键知识点: 1. **基础人脸检测**: - Haar级联分类器:OpenCV中用于人脸检测的默认方法是基于Haar特征的级联分类器,这是一种机器学习算法,通过训练大量正面和非正面人脸样本来识别人脸。 - XML文件:级联分类器的参数存储在XML文件中,如`haarcascade_frontalface_default.xml`,它包含了一系列特征级联规则。 - `cv2.CascadeClassifier()`函数:使用该函数加载级联分类器,并在图像上检测人脸。 2. **动态人脸识别**: - 实时视频流处理:利用`cv2.VideoCapture()`函数获取摄像头视频流,然后逐帧处理以实现动态人脸识别。 - 帧处理:每帧图像经过灰度化、缩放等预处理步骤,然后应用级联分类器进行人脸检测。 - 人脸框标记:检测到的人脸位置用矩形框标出,通常使用`cv2.rectangle()`函数实现。 3. **人脸对齐与特征提取**: - 人脸对齐:为了进行更高级的操作,如人脸识别或表情分析,可能需要将人脸对齐到标准位置,这通常涉及旋转和平移操作。 - 特征提取:如使用Local Binary Patterns (LBP) 或 Histogram of Oriented Gradients (HOG) 算法提取人脸特征,为后续的识别阶段提供数据。 4. **人脸识别**: - 人脸验证与识别的区别:人脸验证是判断两张人脸是否属于同一人,而人脸识别是识别出某张人脸属于哪个人。 - 人脸识别算法:可以使用Eigenfaces、Fisherfaces或最近邻算法等。这些算法将人脸特征向量与预先构建的模型进行比较,以识别身份。 - OpenCV的`cv2.face.LBPHFaceRecognizer_create()`、`cv2.face.EigenFaceRecognizer_create()`或`cv2.face.FisherFaceRecognizer_create()`函数用于创建相应的识别器模型。 5. **人脸勾画**: - 局部特征:通过检测眼睛、鼻子和嘴巴等局部特征,可以进一步增强人脸的表现力。OpenCV提供了`cv2.findContours()`和`cv2.drawContours()`函数来检测和绘制这些特征。 - 人脸属性检测:除了基本的人脸框,还可以检测眼神、笑容、性别等属性,这需要更复杂的模型,如深度学习模型Dlib或MTCNN。 6. **深度学习方法**: - 近年来,基于深度学习的人脸识别模型如VGGFace、FaceNet和ArcFace等,已经取得了显著的性能提升。这些模型通常需要大量的标注数据进行训练,并且可以实现更复杂的身份识别任务。 7. **项目实现**: - 代码结构:项目通常包含预处理模块、人脸检测模块、特征提取模块(如果适用)、识别模块以及可视化模块。 - 数据集:可能需要准备一个包含多个人的面部图像的数据集,用于训练和测试识别模型。 - 结果展示:最终结果可以通过显示带有识别信息的图像或输出识别结果到控制台来呈现。 通过本项目,你可以掌握OpenCV在Python中的基本用法,理解人脸识别的工作流程,并了解如何结合深度学习技术进行更高级的应用。实践中遇到的问题和解决策略也将加深你对计算机视觉的理解。
2024-07-20 09:41:05 7KB opencv python
1
在OpenCV基础知识的第十部分,我们将深入探讨人脸识别项目,这是一个非常实用且广泛应用于各种场景的技术。OpenCV,全称为Open Source Computer Vision Library,是一个开源的计算机视觉库,它提供了丰富的功能,包括图像处理、视频分析以及包括人脸识别在内的多种对象识别。 人脸识别是计算机视觉领域的一个重要课题,它涉及到图像处理、模式识别和机器学习等多个子领域。在这个项目中,我们将学习如何使用OpenCV来实现这一功能,这对于初学者来说是一个很好的实践机会。OpenCV库中包含了Haar特征级联分类器,这是一个经过预先训练的模型,专门用于检测图像中的人脸。 我们需要了解Haar特征,这是一种基于图像强度直方图的局部特征描述符。Haar级联分类器通过一系列的Haar特征和Adaboost算法进行训练,能够有效地检测出图像中的人脸。在OpenCV中,我们可以使用`cv2.CascadeClassifier`类加载预训练的级联分类器XML文件,如`haarcascade_frontalface_default.xml`,用于人脸检测。 接着,我们将学习如何使用OpenCV处理图像和视频流。在处理图像时,我们需要读取图片文件,然后应用级联分类器进行人脸检测。对于视频流,可以打开摄像头并实时处理每一帧,检测其中的人脸。OpenCV提供了`cv2.VideoCapture`类来捕获视频流,并用`cv2.imshow`显示处理结果。 除了人脸识别,这个项目还涵盖了其他几种跟踪技术,如眼睛跟踪、行人跟踪和车牌跟踪。眼睛检测通常使用类似的方法,但可能需要更精细的特征描述符,如LBP(Local Binary Patterns)。行人和车牌的检测则可能涉及更复杂的模型,如HOG(Histogram of Oriented Gradients)特征和SVM(Support Vector Machines)分类器。 在实现这些功能时,OpenCV提供了一些关键函数,如`cv2.rectangle`用于在图像上绘制矩形框以标记检测到的对象,以及`cv2.waitKey`来控制程序的运行速度和用户交互。此外,可能还需要利用`cv2.resize`对图像进行缩放,以及`cv2.imwrite`将结果保存为图片文件。 在实际项目中,我们还需要考虑性能优化和误报的减少。例如,可以采用多尺度检测来提高人脸检测的准确性,或者使用滑动窗口策略来寻找不同大小和位置的人脸。同时,还可以通过设置阈值来减少非人脸区域的误判。 "OpenCV基础知识(10)- 人脸识别项目完整代码"是一个极好的学习资源,它将引导OpenCV初学者逐步掌握人脸识别和其他对象跟踪技术。通过实践这些代码,不仅可以理解OpenCV的基本操作,还能掌握计算机视觉中的核心概念,为进一步深入学习和应用打下坚实的基础。
2024-07-20 09:39:24 4.84MB opencv
1
环境: Windows 10 pro x64 Visual Studio 2015 OpenCV4.9.0 算法: Face Detection with YuNet Face Recognition with SFace
2024-07-20 09:31:12 96.5MB opencv 人脸识别 人脸检测
1
**AForge.NET框架详解** AForge.NET框架是一个开源的、基于C#的开发库,专为计算机视觉和图像处理任务而设计。这个框架版本2.2.5包含了完整的源代码,便于开发者深入理解其内部机制并进行定制化开发。同时,它提供了详细的手册和示例,帮助用户快速上手,而引用库则方便了项目集成。 **框架概述** AForge.NET框架的核心是其丰富的算法集合,涵盖了图像分析、模式识别、机器学习等多个领域。在人脸识另方面,它提供了强大的工具和方法,如特征检测、模板匹配以及人脸检测和识别算法。这些功能对于构建智能安全系统、面部表情分析等应用非常有用。 **C#与Windows平台** 由于AForge.NET是用C#编写的,因此它天然地适用于Windows环境,充分利用了.NET Framework的特性。C#是一种面向对象的编程语言,具有良好的性能和易于理解的语法,使得开发者可以高效地构建复杂的应用程序。在Windows平台上,AForge.NET可以无缝集成到各种应用程序中,如桌面应用、服务或者WPF和WinForms项目。 **图像处理与计算机视觉** AForge.NET框架提供了丰富的图像处理类,包括图像滤波、色彩转换、边缘检测等基本操作。此外,还有高级功能如直方图均衡化、形态学操作等,用于改善图像质量和提取关键特征。对于计算机视觉任务,框架提供了一些基础算法,如霍夫变换用于直线和圆的检测,以及模板匹配用于查找图像中的特定模式。 **人脸识别** 在人脸识别方面,AForge.NET支持Haar特征级联分类器,这是OpenCV库中广泛使用的一个人脸检测算法。通过训练数据,该算法可以检测出图像中的人脸区域。配合特征提取和比对算法,AForge.NET还能够实现人脸识别,识别已知个体的身份。 **学习与应用** 为了帮助开发者更好地理解和使用AForge.NET,提供的手册详细介绍了每个类和方法的功能,以及如何在实际项目中应用它们。示例代码则展示了框架功能的实际运用,使初学者能够快速上手。此外,社区的支持和不断更新的文档确保了开发者可以获得及时的帮助。 AForge.NET框架2.2.5版是一个强大且全面的工具,对于想要在C#和Windows环境中进行图像处理和计算机视觉开发的程序员来说,是一个不可多得的资源。其开源特性、详尽的文档和丰富的功能,使其成为开发者实现各种复杂视觉任务的理想选择。
2024-07-12 16:16:20 34.04MB windows 人脸识别
1
基于ESP32 CAM的人脸识别、检测代码,该代码源自官方的例程,使用者可通过Arduino进行编程、编译、上传。使用Esp32cam进行人脸检测,可以录入人脸,再进行检测。并对未录入的人脸和录入的人脸进行标记。
2024-07-05 10:03:45 21KB
1
To complement the disadvantages of the HFB database, we collect a larger database called CASIA NIR-VIS 2.0 database, in which the images are captured using the same device as the HFB database. Compared to HFB, NIR-VIS 2.0 has the following new features: The number of subjects in the NIR-VIS 2.0 database is 725, which is 3 times more than the HFB database. We define a group of specific protocols for performance evaluation. On the contrary, the protocols of the HFB database are unclear for perfor
2024-07-04 21:08:06 85B 数据集
1
在本项目"face-api-demo"中,我们关注的是利用JavaScript库face-api.js来实现人脸检测与采集的功能。face-api.js 是一个强大的JavaScript库,它利用深度学习技术,为Web应用程序提供了实时的人脸检测、识别以及表情分析等功能。下面将详细探讨这个库的核心概念、工作原理以及如何在实际项目中应用。 让我们了解face-api.js的核心功能。该库主要包含以下几个模块: 1. **人脸检测(Face Detection)**:这是face-api.js的基础,它可以检测图像或视频流中的人脸。它使用预训练的SSD(Single Shot Multibox Detector)模型,能够快速定位出图像中的人脸位置,并返回包含人脸边界框的数组。 2. **人脸识别(Face Recognition)**:除了检测人脸,face-api.js还可以识别人脸。它使用了预训练的FaceNet模型,通过计算人脸的嵌入向量(embedding),可以比较不同人脸之间的相似性,从而实现人脸识别。 3. **表情分析(Face Expression Recognition)**:此外,库还支持表情分析,如识别出七种基本表情(快乐、悲伤、愤怒、惊讶、恐惧、厌恶和中立)。 现在,我们来看一下如何在项目中使用face-api.js。在"face-api-demo"中,遵循以下步骤: 1. **安装依赖**:使用`npm install`命令安装face-api.js库以及相关的图像处理库,如sharp,以处理图像数据。 2. **加载模型**:在项目启动前,需要先加载预训练的模型。这通常通过`loadFaceDetectionModel`、`loadFaceRecognitionModel`等方法完成,这些方法会异步下载模型文件并进行解压。 3. **捕获视频流**:使用HTML5的`
2024-07-03 19:18:31 9.92MB JavaScript
1
FR1002人脸识别模块结合stm32实现3D红外人脸识别,并配合超声波模块触发人脸识别。 FR1002人脸识别模组解决方案以高性能应用处理器为硬件平台,配合双目传感器进行活体检测,具有启动速度快、金融级的识别能力、超低使用功耗等特点。凭借超低功耗、强大的运算速度,在多种应用领域中,为各行业赋能。 人脸识别模组具备完整的人脸处理能力,可以在无 需上位机参与的情况下,完成人脸录入,图像处理,人脸比对,人脸特征 储存等功能。和同类人脸产品相比,具有以下特色: ❖ 高性能算法芯片 ❖ 双目 3D 摄像头模组 ❖ 广角低畸变镜头 ❖ 红外成像 ❖ 金融支付级别识别算法 ❖ 活体检测,抗各种攻击 ❖ UART 通信接口 ❖ 支持 5.0V~14.0V 供电 ❖ 多种通用尺寸,可适配不同结构。
2024-07-01 09:11:08 500KB stm32 人脸识别 智能门锁 智能安防
1
人脸表情数据集CK+,图片分辨率48*48,包含7类表情
2024-06-24 18:30:16 1.12MB 数据集 人脸表情数据集 表情识别
1