吴恩达的机器学习课程主要包括两门,一门是在Cousera上的《机器学习》,另一门是他在斯坦福大学教授的《CS229: Machine Learning》。 Cousera上的《机器学习》课程侧重于概念理解,而不是数学推导。这门课程重视联系实际和经验总结,吴恩达老师列举了许多算法实际应用的例子,并分享了他们入门AI时面临的问题以及处理这些难题的经验。这门课程适合初学者,课程内容可以在Cousera网站上在线观看,需要注册后可申请免费观看。 斯坦福大学的《CS229: Machine Learning》课程则更加偏好理论,适合于有一定数学基础的同学学习。这是吴恩达在斯坦福的机器学习课程,历史悠久,仍然是最经典的机器学习课程之一。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。 如需更多吴恩达机器学习课程相关内容,可以登录Coursera官网和B站查看课程介绍。
2025-07-23 12:27:49 48.01MB 机器学习
1
用于人类活动识别的深度学习(和机器学习) CNN,DeepConvLSTM,SDAE和LightGBM的Keras实施,用于基于传感器的人类活动识别(HAR)。 该存储库包含卷积神经网络(CNN)[1],深度卷积LSTM(DeepConvLSTM)[1],堆叠降噪自动编码器(SDAE)[2]和用于人类活动识别(HAR)的Light GBM的keras(tensorflow.keras)实现。 )使用智能手机传感器数据集, UCI智能手机[3]。 表1.在UCI智能手机数据集上的五种方法之间的结果摘要。 方法 准确性 精确 记起 F1分数 轻型GBM 96.33 96.58 96.37 96.43 CNN [1] 95.29 95.46 95.50 95.47 DeepConvLSTM [1] 95.66 95.71 95.84 95.72 SDAE [
2025-07-15 10:34:57 1.84MB machine-learning deep-learning keras lightgbm
1
吴恩达Machine Learning课程对应Jupyter代码(第一课 P1-41) 压缩包包含吴恩达课程的第一部分 监督学习、回归与分析 的课程ppt和一系列基于Jupyter Notebook的Python代码,主要用于教授机器学习的基础知识。 本资源适用于对机器学习和Python编程感兴趣的初学者。 通过这个压缩包,可以按照吴恩达的教学步骤,亲手实践每一个例子,从而加深对机器学习的理解。每一章的Notebook都可能包含理论解释、代码示例和练习,帮助你巩固所学知识。 可结合作者已整理的笔记展开: https://blog.csdn.net/weixin_46632427/article/details/144102661?spm=1001.2014.3001.5502 https://blog.csdn.net/weixin_46632427/article/details/145431040?spm=1001.2014.3001.5502
2025-07-14 14:51:48 83.12MB 课程资源 jupyter
1
### 机器学习为儿童:项目基础的人工智能入门 #### 一、引言 随着人工智能技术的迅猛发展,机器学习已经不再局限于成人世界的研究领域。《Machine Learning for Kids》是一本专门为孩子们准备的书籍,作者Dale Lane通过一系列有趣且易于理解的项目,将复杂的机器学习概念变得简单易懂。本书的出版旨在激发儿童对人工智能的兴趣,并帮助他们掌握这一领域的基本技能。 #### 二、目标读者与适用年龄 本书主要面向8-16岁的儿童以及任何对编程和机器学习感兴趣的初学者。无需事先具备编程经验,只需要基本的计算机操作能力即可跟随书中的指导进行实践。 #### 三、主要内容概述 本书通过一系列有趣的项目引导孩子们逐步探索机器学习的世界。这些项目包括但不限于: 1. **制作一个可以识别手势的游戏**:通过这个项目,孩子们可以学习如何训练机器学习模型来识别特定的手势,并利用这些手势控制游戏中的角色。 2. **创建一个能够回答问题的聊天机器人**:孩子们将学习如何让程序理解和回答用户提出的问题,从而构建出一个简单的对话系统。 3. **设计一个能学习简单命令的计算机助手**:该项目教会孩子们如何通过语音或文本输入让计算机执行简单的任务,如播放音乐、查询天气等。 #### 四、使用的工具和技术 为了确保项目的可实施性和趣味性,《Machine Learning for Kids》采用了Scratch编程语言作为教学工具。Scratch是一种图形化编程语言,非常适合儿童使用。它通过拖拽编程块的方式简化了编程过程,使孩子们能够更专注于解决问题而不是语法细节。 此外,本书还介绍了如何利用TensorFlow.js和Teachable Machine等工具来进行机器学习模型的训练。这些工具简化了机器学习的过程,使得即使是初学者也能轻松上手。 #### 五、教育意义与价值 1. **培养创新思维**:通过实际操作,孩子们能够在实践中思考如何解决现实世界的问题,从而培养他们的创造力和创新能力。 2. **提高逻辑思维能力**:编程是一项高度依赖逻辑思维的活动,通过编程学习,孩子们可以在无形中提升自己的逻辑推理能力。 3. **增强解决问题的能力**:面对复杂的问题时,学会分解问题并逐步解决是极其重要的。编程学习正是这样一种训练过程。 4. **激发对未来科技的兴趣**:接触机器学习和人工智能不仅能够拓宽孩子们的知识视野,还能激发他们对未来科技的兴趣和热情。 #### 六、结语 《Machine Learning for Kids》是一本极具启发性的书籍,它不仅教会孩子们如何进行编程和机器学习的基础操作,更重要的是通过实践活动培养孩子们对科学和技术的好奇心。无论是对于希望引导孩子进入STEM领域的家长,还是想要自学人工智能的儿童而言,这本书都是一个非常好的选择。
2025-07-12 14:15:43 43.74MB 机器学习
1
PixelAnnotation工具 Linux/MAC Windows Donate 该软件可让您手动和快速注释目录中的图像。 该方法是伪手动方法,因为它使用为OpenCV算法。 总体思路是手动为标记提供画笔,然后启动算法。 如果首先需要分割,则用户可以通过在错误区域上绘制新标记来细化标记(如以下视频所示)。 范例: 来自用户( )的小例子: : v tX-xcg5wY4U 建立依赖关系: > = 5.x > = 2.8.x > = 2.4.x 对于Windows编译器:在Visual Studio> = 2015下工作 如何建造去 下载二进制文件: 转到发布
2025-07-09 22:01:09 21.03MB opencv computer-vision deep-learning annotation
1
Paperback: 248 pages Publisher: Packt Publishing - ebooks Account (October 30, 2015) Language: English ISBN-10: 178528049X ISBN-13: 978-1785280498 Make use of Node.js to learn the development of a simple yet scalable cross-platform mobile application About This Book Use Node.js to satisfy the core backend requirements of modern apps, including user management, security, data access, and real-time data communication Build practical real-world mobile applications, which will give you the necessary knowledge to build your very own mobile solutions Step-by-step development of projects using Ionic Framework as the frontend and Node.js for the backend supported by a MongoDB database Who This Book Is For This book is intended for web developers of all levels of expertise who want to deep dive into cross-platform mobile application development without going through the pains of understanding the languages and native frameworks that form an integral part of developing for different mobile platforms. This book is also for you if you are a developer who wants to capitalize on the MobileFirst strategy and so are going to use JavaScript for your complete stack. What You Will Learn Develop an API from scratch Set up a MongoDB Database as part of your mobile application backend Deploy a cross-platform mobile application from the command line Incorporate features within your mobile application that use native phone features such as a gyroscope, GPS, and accelerometer Implement mobile applications that use web-enabled APIs Build a mobile application with real-time chat messaging features Develop a secure mobile application that is capable of functioning with real-time data
2025-07-09 14:38:20 2.73MB Node.js Mobile
1
Welcome to Learning Node.js Development. This book is packed with a ton of content, projects, challenges and real-world examples, all designed to teach you Node by doing. This means you'll be getting your hands dirty early on in the upcoming chapters writing some code, and you'll be writing code for every project. You will be writing every line of code that powers our applications. Now, we would require a text editor for this book. We have various text editor options that you can use. I always recommend using Atom, which you can find at atom.io. It's free, open-source, and it's available for all operating systems, namely Linux, macOS, and Windows. It's created by the folks behind GitHub. All the projects in the book are fun to build and they were designed to teach you everything required to launch your own Node app, from planning to development and testing to deploying. Now, as you launch these different Node applications and move through the book, you will run into errors, which is bound to happen. Maybe something doesn't get installed as expected, or maybe you try to run an app and instead of getting the expected output, you get a really long obscure error message. Don't worry, I am there to help. I'll show you tips and tricks to get pass through those errors in the chapters. Let's go ahead and get to it.
2025-07-09 14:37:47 27.14MB Node Javascript
1
Pattern Recognition and Machine Learning(完整习题答案)
2025-07-04 22:33:10 1.42MB 习题答案
1
强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
2025-06-20 16:32:13 93KB 强化学习
1
This is the readme for applying deep learning for joint channel estimation and detection in OFDM system. 只是其中一部分,另一部分,分开上传,因为太大le The codes have been tested on Ubuntu 16.04 + tensorflow 1.1 + Python 2.7 Dependences: 1. Tensorflow 2. Winner Channel Model Get Start: cd ./DNN_Detection python Example.py
2025-06-19 18:16:59 27KB deep learnin python ofdm
1