基于PYNQ-Z2实现手写数字识别卷积神经网络硬件加速器.zip
2022-05-21 09:10:22 45.71MB cnn 文档资料 人工智能 神经网络
基于边界框回归损失的目标检测器以其简单、高效的特点被广泛应用于计算机视觉领域。损失函数中定位算法的精度会影响网络模型检测结果的平均精度。我们在Complete Intersection over Union(CIoU)损失函数的基础上提出了一种改进的提高定位精度的算法。具体来说,该算法在于更全面的考虑预测框和真值框的匹配,利用预测框与真值框高宽比尺寸的比例关系,在真值框和预测框对应的宽高比值相同条件下,考虑预测框对定位精度的影响因素,这样强化了惩罚函数的作用,提高了网络模型的定位精度。我们称这个损失函数是Improved CIoU (ICIoU)。在Udacity, PASCOL VOC(Pascal Visual Object Classes)和MS COCO(Microsoft Common Objects in Context)数据集上的实验,证明了ICIoU用于单级目标检测器YOLOv4在提高模型定位精度方面的有效性。所提出的ICIoU算法相比IoU可以在Udacity测试开发上显著提高AP 1.92%和AP75 3.25%。它还可以在PASCAL VOC上显著提高AP 1.7
2022-05-21 09:10:21 1.54MB cnn 源码软件 人工智能 神经网络
1
3D 三维卷积神经网络CNN(MATLAB).zip 3D 三维卷积神经网络CNN(MATLAB).zip
2022-05-20 19:03:50 5KB 3d cnn matlab 源码软件
实体关系抽取旨在识别网络文本中的实体,并提取出文本中实体之间隐含的关系。研究表明,深度神经网络在实体关系抽取任务上具有可行性,并优于传统关系抽取方法。目前的关系抽取方法大都使用卷积神经网络(CNN)和长短期记忆神经网络(LSTM),然而CNN只考虑连续词之间的相关性而忽略了非连续词之间的相关性。另外,LSTM虽然考虑了长距离词的相关性,但提取特征不够充分。针对这些问题,提出了一种CNN和LSTM结合的实体关系抽取方法,采用3种结合方法进行了实验,验证了该方法的有效性,在F1值上有一定的提升。
1
项目简介 用搭载Keras的tensorflow框架通过卷积神经网络训练模型,使用贝叶斯分类器识别人类的情绪。 根据情绪选择相应的emoji匹配 (更多详情请打开FaceEmotionClassifier.ipynb文件) 项目环境 数据集: Fer2013 ( kaggle挑战赛 ) ,Emoji表情集 神经网络框架: Keras,Tensorflow-gpu 分类器: 基于Opencv-Normal Bayes Classifier(正态贝叶斯分类)训练的贝叶斯分类器 配置环境: python==3.6.0 tensorflow-gpu==1.8.0 keras-gpu==2.1.6 opencv==3.3.1 其他环境详见:environment.yaml
2022-05-20 12:05:32 264.1MB cnn 分类 源码软件 人工智能
纯手写卷积神经网络,未使用任何神经网络框架,使用numpy纯手写卷积神经网络,研究此代码可充分搞懂卷积神经网络原理,本人也是通过此代码亲自走过来的。代码简单。 适用人群:适用于有意愿彻底搞懂卷积神经网络底层原理的同学,适合做该领域研究的学者,较易上手。 阅读建议:对于想学习python的同学,可通过此小项目一边研习python代码语法,一边学习卷积神经网络算法,可以很快入门python,并掌握基础的卷积神经网络算法。
2022-05-19 19:08:29 249KB python 开发语言 人工智能 CNN
基于RISCV64果核处理器的卷积神经网络加速器研究.zip
2022-05-18 21:07:17 18.12MB cnn 综合资源 人工智能 神经网络
手写汉字识别完整代码可运行,使用深度学习cnn网络结构,训练模型,并使用qt界面实现交互,能在界面上写汉字识别。 内含完整代码可运行。 主要是python代码,pytorch框架,也可以改成tensorflow,内有说明文档,可以根据文档进行安装环境和运行代码。 代码结构逻辑简单,依次运行01、02、03顺序代码即可运行。 博客说明:https://blog.csdn.net/qq_34904125/article/details/124813220
2022-05-18 09:09:14 358KB 深度学习 cnn qt 手写汉字识别
pytorch实现cnn手写识别
2022-05-17 17:08:40 1.74MB cnn pytorch 源码软件 人工智能
1