卷积神经网络简略版思维导图
2022-05-26 09:11:42 138KB cnn 综合资源 人工智能 神经网络
1
时序预测 | MATLAB实现CNN(卷积神经网络)时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
CNN识别验证码的实用教程,从数据标定到搭建服务, tensorflow captcha recognization practical tutorial
2022-05-24 11:55:26 1.11MB Python开发-机器学习
1
CNN可以很好地识别数据中的简单模式,然后使用这些模式在更高的层中形成更复杂的模式。当您希望从整体数据集的较短(固定长度)片段中获得有趣的特征,且特征在片段中的位置相关性不高时,1D CNN非常有效。 这适用于传感器数据(如陀螺仪或加速度计数据)的时间序列分析。它还适用于分析固定长度周期内的任何类型的信号数据(如音频信号)。另一个应用程序是NLP(尽管在这里LSTM网络更有前途,因为单词的接近程度可能并不总是一个可训练模式的良好指示器) 博客地址:https://blog.csdn.net/weixin_38346042/article/details/121742025?spm=1001.2014.3001.5501
2022-05-23 21:06:55 5KB keras cnn 人工智能 深度学习
针对基于深度卷积神经网络的高光谱图像分类算法中存在的空间分辨率下降、池化操作引发特征丢失从而导致分类精度下降的问题,设计了一种由双边融合块构成的双边融合块网络。1×1卷积与超链接构成双边融合块上结构,传递局部空间特征,池化、卷积、反卷积、上采样组成下结构,强化高效判别特征。在3个基准高光谱图像数据集上的实验结果表明,该模型优于其他同类分类模型。
1
该文件为深度学习与卷积神经网络的matlab程序,里面包含了卷积神经网络的代码、训练程序以及结合应用的相关程序,有全套注释,适合初学卷积神经网络与深度学习的伙伴.
2022-05-23 16:32:30 53.43MB deep learning CNN matlab
1
17CVPR_CODE_Learning Dynamic Guidance for Depth Image Enhancement 17 cvpr 代码
2022-05-23 12:09:08 37.6MB Deep CNN Denoiser Prior
1
smote的matlab代码SGM-CNN 一种将类不平衡处理与深度学习相结合的基于流的网络入侵检测模型:SGM-CNN。 版权所有:黄璐璐、张红波(郑州大学信息工程学院) 本次NIDS的两位贡献者是Lulu Huang女士和SN ENGR。 张红坡()。 如果您有任何问题,请随时给我们发送电子邮件。 请引用我们的论文,以防您发现我们的工作有用。 (1) Hongpo Zhang、Lulu Huang、Chase Q. Wu 和 Zhanbo Li:一种基于 SMOTE 和高斯混合模型的有效卷积神经网络,用于不平衡数据集中的入侵检测。 计算机网络 (2020), doi:10.1016/j.comnet.2020.107315 (2) Hongpo Zhang, Chase Q. Wu, Shan Gao, Zongmin Wang, Yuxiao Xu and Yongpeng Liu: An Effective deep learning based scheme for network intrusion detection, in: 2018 24th Internationa
2022-05-23 09:24:45 341KB 系统开源
1
基于PyTorch搭建CNN实现视频动作分类任务 有数据有代码 可直接运行 数据基于PyTorch搭建CNN实现视频动作分类任务 有数据有代码 可直接运行 数据
2022-05-22 21:06:49 62.86MB pytorch cnn 音视频 分类
Csdn上上传的代码都是完整的,大家也可以下载其他项目练手,丰富自己的简历也不错。 博客演示:https://blog.csdn.net/qq_34904125/article/details/124913842 其他小项目完整代码: https://blog.csdn.net/qq_34904125?type=download 算法部分 本次是水果分类识别,一共5中水果。 数据集放在“水果数据集”文件夹下 “水果数据集”下的子文件夹有几个子文件夹就是几分类。 代码依次运行 python 01数据集文本生成制作.py 会在本地生成test.txt和train.txt两个文本 里面存放的是图片路径和对应的标签序号。 python 02resnet迁移学习.py 会生成模型model.ckpt。 python 03flask_server.py 是打开服务端,调用训练好的model水果分类模型,小程序界面上传图片会通过这个代码进行接受并返回检测结果。 然后在小程序工具平台打开小程序部分的代码直接运行即可。
2022-05-22 21:06:48 92.94MB python 小程序 cnn 综合资源