卷积神经网络损失函数ICIoU

上传者: wxf2020csdn | 上传时间: 2022-05-21 09:10:21 | 文件大小: 1.54MB | 文件类型: PDF
基于边界框回归损失的目标检测器以其简单、高效的特点被广泛应用于计算机视觉领域。损失函数中定位算法的精度会影响网络模型检测结果的平均精度。我们在Complete Intersection over Union(CIoU)损失函数的基础上提出了一种改进的提高定位精度的算法。具体来说,该算法在于更全面的考虑预测框和真值框的匹配,利用预测框与真值框高宽比尺寸的比例关系,在真值框和预测框对应的宽高比值相同条件下,考虑预测框对定位精度的影响因素,这样强化了惩罚函数的作用,提高了网络模型的定位精度。我们称这个损失函数是Improved CIoU (ICIoU)。在Udacity, PASCOL VOC(Pascal Visual Object Classes)和MS COCO(Microsoft Common Objects in Context)数据集上的实验,证明了ICIoU用于单级目标检测器YOLOv4在提高模型定位精度方面的有效性。所提出的ICIoU算法相比IoU可以在Udacity测试开发上显著提高AP 1.92%和AP75 3.25%。它还可以在PASCAL VOC上显著提高AP 1.7

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明