本程序使用python进行编译,实现了高校二手闲置品交易平台的设计。程序包含如下内容: 用户注册登录:平台应该支持用户注册和登录功能,以便用户可以创建个人账户并上传自己的闲置品。 闲置品上传:用户应该能够上传自己的闲置品,包括物品的图片、描述、价格等信息。 闲置品搜索与浏览:平台应该提供搜索和浏览功能,以便用户可以方便地找到自己需要的物品。 闲置品交流与交易:平台应该支持用户之间的交流和交易功能,例如私信、议价、下单等。 数据分析与统计:平台应该能够进行数据分析和统计,以便了解用户的交易行为和需求,为平台的优化提供依据。
2024-08-16 15:35:52 3KB python 数据分析 二手交易平台
1
深度学习是一种人工智能领域的核心技术,它通过模仿人脑神经网络的工作方式来解决复杂问题,尤其在图像识别、自然语言处理和声音识别等领域表现出强大的能力。在这个项目中,我们重点关注的是利用深度学习进行二维码识别,这是一个实际应用广泛的任务,比如在物流、广告、产品追踪等领域。 "二维码数据集"是训练深度学习模型的关键。一个数据集是模型学习的基础,它包含了大量的训练样本,这些样本通常由真实的二维码图片和对应的标签(即每个二维码的含义)组成。在本案例中,数据集可能已经被标注为VOC格式,这是一种常用的目标检测数据集标注格式,包括边界框信息和类别标签。 "二维码识别"是这个项目的核心任务。二维码(Quick Response Code)是一种二维条形码,能够存储各种类型的信息,如文本、URL、联系人信息等。识别二维码的过程涉及到对图像的预处理、特征提取、分类器的运用等步骤。使用深度学习,尤其是卷积神经网络(CNN),可以自动学习二维码的特征并进行识别,提高了识别的准确性和效率。 "yolov5自定义数据集"指的是使用YOLOv5模型进行训练,YOLO(You Only Look Once)是一种实时目标检测系统,因其快速且准确的性能而广受欢迎。YOLOv5是YOLO系列的最新版本,改进了前几代的性能,包括更快的训练速度和更高的精度。自定义数据集意味着我们将使用提供的二维码数据集来替代原版模型的训练数据,使模型能适应特定的二维码识别任务。 在项目中,有两个关键脚本:"voc_label.py" 和 "split_train_val.py"。"voc_label.py" 可能是用来将VOC格式的数据转换为YOLO格式的工具,因为YOLO模型通常需要YOLO格式的标注数据,这种格式包含边界框坐标和类别信息。"split_train_val.py" 则可能用于将数据集分割成训练集和验证集,这是深度学习模型训练中的标准步骤,训练集用于训练模型,验证集用于评估模型在未见过的数据上的表现。 "Annotations" 文件夹很可能包含了VOC数据集中所有的标注信息,每张图片对应一个XML文件,详细描述了图像中的二维码位置和类别。而"images" 文件夹则存放着实际的二维码图片,这些图片将被用于训练和测试模型。 这个项目旨在利用深度学习,特别是YOLOv5框架,对二维码进行识别。通过创建和训练自定义数据集,我们可以构建一个专门针对二维码的高效识别系统。从数据预处理到模型训练,再到评估和优化,整个过程都需要严谨的工程实践和理论知识,以确保模型在实际应用中的效果。
2024-08-16 15:02:21 85.36MB 深度学习 数据集
1
### Matlab:DY溢出指数代码及原数据解析 #### VAR模型概述 本文旨在介绍如何使用MATLAB实现一种简化形式的向量自回归模型(Vector Autoregression, VAR),并基于此模型计算动态溢出指数(DY Spillover Index)。VAR模型是一种广泛应用于经济和金融时间序列分析中的统计工具,它允许我们研究多个时间序列之间相互作用的方式。 ### 简化形式的VAR模型 简化形式的VAR模型可以表示为: \[ y_t = \nu + A_1 y_{t-1} + A_2 y_{t-2} + \ldots + A_p y_{t-p} + u_t \] 其中: - \( y_t \) 是 \( k \) 维的内生变量向量。 - \( A_i \) 是 \( k \times k \) 的系数矩阵。 - \( u_t \) 是误差项。 该模型可以通过等价的形式转化为VAR(1)模型: \[ Y_t = v + A Y_{t-1} + U_t \] 其中: - \( Y_t = \begin{bmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{t-p+1} \end{bmatrix} \) - \( A = \begin{bmatrix} A_1 & A_2 & \ldots & A_{p-1} & A_p \\ I_k & 0 & \ldots & 0 & 0 \\ 0 & I_k & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & I_k & 0 \end{bmatrix} \) ### 移动平均表示法 如果假设VAR(p)过程是稳定的,则其移动平均表示可通过连续替换得到。具体来说,\( Y_t \) 可以表示为: \[ Y_t = A(L)^{-1} \nu + A(L)^{-1} U_t = A(L)^{-1} \nu + \sum_{i=1}^{\infty} \Phi_i U_{t-i} \] 其中: - \( A(L)^{-1} = \sum_{i=0}^{\infty} \Phi_i L^i \) - \( \Phi_i = J A_i J' \),其中 \( J = [I_k, 0_{k \times k(p-1)}] \) - \( \Phi_0 = I_k \),且对于 \( i > 0 \),有 \( \Phi_i = \sum_{j=1}^{i} \Phi_{i-j} A_j \) ### 预测误差方差分解(FEVD) 预测误差方差分解(FEVD)是用来分析每个外生冲击对预测误差方差的贡献程度的方法。对于水平 \( h \) 处的预测误差 \( y_{k,t+h} - y_{k,t(h)} \): \[ y_{k,t+h} - y_{k,t(h)} = \sum_{i=1}^{\infty} \Phi_i u_{t+h-i} \] 其中 \( \Sigma_u = E(u_t u_t') \) 是误差项的协方差矩阵。如果 \( \Sigma_u = P \Sigma_w P' \),其中 \( \Sigma_w = I_K \),则 \( \Theta_i = \Phi_i P \)。 ### DY溢出指数 Diebold 和 Yilmaz (2009) 提出了溢出指数来衡量跨企业、市场或国家的溢出效应。溢出指数定义为: \[ \text{Spillover Index} = \frac{\sum_{k,j \in \{1..K\}, k \neq j} \text{FEVD}_{kj}(h)}{\sum_{k,j \in \{1..K\}} \text{FEVD}_{kj}(h)} \] 其中,\( \text{FEVD}_{kj}(h) \) 表示第 \( j \) 个冲击对第 \( k \) 个变量在水平 \( h \) 上预测误差方差的贡献。通过构造迪伯德-伊尔马兹连通性表(FEVD 表),可以直观地理解这些贡献。 ### 方向性连接 在迪堡和伊尔马兹的工作中还提出了方向性连接的概念,用于衡量不同实体之间的信息流动方向。例如,从其他国家到国家 \( i \) 的总方向性联系 \( C_i \leftarrow \ast \) 定义为: \[ C_i \leftarrow \ast = \sum_{j=1, j \neq i}^N dH_{ij} \] 同时,与其他国家的完全定向联系 \( C_\ast \leftarrow j \) 定义为: \[ C_\ast \leftarrow j = \sum_{i=1, i \neq j}^N dH_{ij} \] ### 广义VAR框架下的FEVD 在广义VAR方法中,FEVD 在视界 \( h = H \) 处的计算如下: \[ dH_{kj} = \sigma_j^{-1} \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_j^2 / \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_k e_k \] 其中 \( e_k \) 是 \( I_K \) 的第 \( k \) 列。然而,这种广义FEVD不保证行和或列和为1,因此,迪堡和伊尔马兹 (2012) 建议进行归一化处理。 ### 总结 本文介绍了如何在MATLAB中实现一种简化形式的VAR模型,并基于此模型计算动态溢出指数(DY Spillover Index)。通过上述介绍,我们可以了解到VAR模型在经济和金融领域的应用,以及如何利用MATLAB工具包进行数据分析。DY溢出指数能够帮助我们更好地理解和量化不同实体之间的相互作用和信息流动。此外,文中还讨论了不同的FEVD计算方法,包括传统的乔莱斯基分解和广义VAR框架下的FEVD计算方法,这为我们提供了更多的选择和灵活性。 VAR模型及其扩展在现代经济和金融分析中扮演着重要的角色。通过MATLAB实现这些模型可以帮助研究人员深入理解数据背后的模式和关系。
2024-08-16 11:49:40 22KB matlab
1
本压缩文件包含Gldas数据处理的Malab代码和测试数据,程序可直接运行,结果输出为文件,需要出图的可以用Gmt进行绘图。本程序简单介绍:由水量平衡方程可以将地下水储量的计算过程分解为以下部分,`第一部分计算陆地水储量变化`、`第二部分计算地表水储量变化`、`第三部分计算冰后回弹改正`、`第四部分计算地下水储量变化`。本篇简单介绍下第二部分的内容,主要是GLDAS水文模型数据的有关处理过程,同样也是对前面几篇博文方法的一个整合或总结 。详细理论和介绍可以参考[https://blog.csdn.net/weixin_43339605/category_12556003.html]系列博文,希望有所帮助,同时遇到问题也可以留言交流。
2024-08-16 10:26:15 84.79MB
1
GRACE数据处理:根据水平衡方程,计算地下水储量变化,要知道陆地质量变化和地表水储量变化,本程序为地下水储量变化计算的一步,用于处理GRACE数据,反演得到陆地质量变化(陆地水储量变化),该程序包含测试数据,可直接运行,如运行出错可更换matlab版本到2019。具体理论及过程可以查看系列文章(https://blog.csdn.net/weixin_43339605/category_12556003.html),如有问题可以留言讨论。
2024-08-16 10:17:35 15.85MB
1
SPEI,全称为标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index),是一种广泛用于评估气候干旱程度的指标。它结合了降水量和潜在蒸发量,以更全面地反映地区水分状况。在气候变化研究、水资源管理、农业生产和灾害预警等领域,SPEI的应用十分广泛。 计算SPEI的过程包括以下几个关键步骤: 1. **数据收集**:需要收集每日的降水量数据,这是SPEI计算的基础。同时,也需要获取相应的潜在蒸发量数据,这通常可以通过气象参数如温度、湿度、风速等估算得到。 2. **数据预处理**:对收集到的原始数据进行清洗和校正,去除异常值,确保数据质量。 3. **计算潜在蒸发量(PET)**:PET是衡量一个地区在特定气候条件下最大可能的水分损失量。常见的PET计算方法有Penman-Monteith方程、Thornthwaite公式等。 4. **计算降水量与PET的差值(P-E)**:将每日降水量与潜在蒸发量相减,得到日水分盈亏。 5. **时间序列分析**:将日水分盈亏数据转换为连续的时间序列,可以采用滑动窗口法,例如月度或季度平均。 6. **分布拟合**:对时间序列进行概率分布拟合,常见的有正态分布、泊松分布、Gamma分布等,选择最能描述数据分布的模型。 7. **标准化处理**:利用拟合好的概率分布,对时间序列进行标准化,使得结果具有可比性。这一步骤通常会将数据转化为标准正态分布,即均值为0,标准差为1。 8. **计算SPEI指数**:标准化后的值即为SPEI指数,负值表示干旱,正值表示湿润,数值的绝对大小代表干旱或湿润的程度。 9. **SPEI等级划分**:根据SPEI值的大小,可以划分出不同的干旱等级,如轻度、中度、重度和极端干旱。 10. **结果解释与应用**:SPEI指数可以用来识别干旱事件的开始、持续时间和强度,对于气候风险评估、水资源规划和农业决策支持都有重要意义。 通过上述步骤,我们可以计算得到不同时间尺度上的SPEI1(短期干旱)和SPEI12(长期干旱)指数,以更全面地了解地区的水分状况变化。在实际应用中,可能还需要考虑地形、土壤类型等因素的影响,以提高SPEI的适用性和准确性。 文件名"SPEI"可能包含了完成这些计算过程所需的数据集和/或结果文件,例如可能包含每日降水量、PET、SPEI指数等数据。通过深入分析这些数据,可以进一步研究特定区域的气候特征、干旱趋势以及对环境和人类活动的影响。
2024-08-16 10:10:13 1.68MB SPEI
1
护理大数据研究热点和趋势分析 护理大数据是指在与护理相关的领域中产生的大量数据,包括但不限于病人记录、医疗保健提供者的行动、医疗设备产生的数据等。这些数据的研究和分析对于提高医疗保健质量和效率、降低医疗成本具有重要意义。本次演示将介绍护理大数据研究的热点和趋势,并进行分析。 研究热点: 1. 研究方法:护理大数据的研究方法主要包括数据挖掘、机器学习和人工智能等技术。这些方法可以帮助研究人员从大量数据中提取有用的信息,以支持更好的决策和医疗保健服务。 2. 应用场景:护理大数据的应用场景非常广泛,包括但不限于:预测疾病发病率、确定治疗方案、评估医疗保健服务的质量和效率、发现新的疾病治疗方法等。 3. 数据挖掘技术:数据挖掘技术是护理大数据研究的关键技术之一。这些技术可以帮助研究人员从大量数据中提取有用的信息。常用的数据挖掘技术包括聚类分析、关联规则挖掘、决策树等。 趋势分析: 1. 市场趋势:随着大数据技术的发展,护理大数据的市场也在不断扩大。越来越多的公司和机构开始意识到护理大数据的价值,并投入到相关研究和应用中。 2. 技术趋势:护理大数据的技术趋势主要体现在以下几个方面:一是数据采集技术的不断发展,如物联网、可穿戴设备等技术的应用,可以更加方便地收集各种类型的数据;二是数据处理和分析技术的不断进步,如人工智能、机器学习等技术的应用,可以帮助研究人员从大量数据中提取有用的信息;三是数据安全和隐私保护技术的不断提高,如加密技术、数据脱敏技术等,可以保护患者的隐私和数据安全。 3. 需求趋势:随着社会老龄化和慢性病的不断增加,社会对护理大数据的需求也越来越高。同时,随着医疗技术的不断进步和社会对医疗保健服务质量的不断追求,护理大数据的应用前景也越来越广阔。 挑战与机遇: 1. 挑战:护理大数据的研究和应用也面临着一些挑战。数据质量是一个重要的问题。由于数据来源广泛、收集方式多样,数据的质量往往难以保证。这需要投入大量的人力物力进行数据清洗和预处理,以确保数据的准确性和可靠性。数据共享也是一个亟待解决的问题。由于涉及患者的隐私和商业利益,数据的共享和交换往往受到限制。 护理大数据的研究和应用具有重要的社会价值和应用前景,但同时也存在一些挑战和限制。因此,我们需要加强对护理大数据的研究和应用,提高数据的质量和可靠性,保护患者的隐私和数据安全,并推动护理大数据在医疗保健领域的应用。
2024-08-14 22:09:49 460KB
1
验证一个特定的Excel图片导出功能。它展示了如何使用EasyExcel库来处理复杂的Excel文件导出任务,包括自定义列宽和图片布局。可以参考博客链接 https://blog.csdn.net/xiaosemei/article/details/127671561 有具体的效果,及代码实例
2024-08-14 18:32:10 86KB EasyExcel 图片导出 图片处理 导出图片
1
本文以某校园供水系统为研究对象, 当前校园供水系统是校园公共设施的重要组成部分,学校为保障校园供水的正常运行需要投入人力、物力以及财力。随着智能水表的普及,可以从中获取大量的实时供水的数据,后勤部门通过数据的分析,解决供水系统中存在的一些问题,提高校园服务和管理水平。 针对问题一,借助EXCEL软件的数据储存与图像功能,先把四个季度的数据导入EXCEL软件,然后绘制条形统计图(见附录1),统计和分析各个水表的变化规律;利用PANDAS软件把校园内的各个功能区进行划分,求各个功能区的用水情况,分析其用水特征,最后(见附录2)。 针对问题二,根据水表之间的关系模型,一级水表约等于一级水表下所以二级水表的和。利用EXCEL软件, 分析一级水表的用水总量与各个二级水表的用水总量做对比,同理二级水表与三级水表对比,以及三级水表与四级水表对比(见表4-1),经数据分析,得出有一部分数据异常,剔除异常数据(可能是水表损坏等原因)。 针对问题三,我们构建了小波神经网络模型,对于用水量数据进行了预测,我们发现预测结果与实际结果比较接近,可以用网络来判定是否存在损漏问题。
2024-08-14 16:57:50 86.96MB pandas 数据分析 神经网络 网络
1
基于粒子群算法(PSO)优化混合核极限学习机HKELM回归预测, PSO-HKELM数据回归预测,多变量输入模型。 优化参数为HKELM的正则化系数、核参数、核权重系数。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-08-14 16:10:01 36KB
1