[{"title":"( 28 个子文件 341KB ) smote的matlab代码-SGM-CNN:我们的基于流的网络入侵检测模型的实现(针对COMNET论文)","children":[{"title":"SGM-CNN-master","children":[{"title":".ipynb_checkpoints","children":[{"title":"MLP-10-checkpoint.ipynb <span style='color:#111;'> 100.10KB </span>","children":null,"spread":false},{"title":"data preprocessing(CICIDS2017)-checkpoint.ipynb <span style='color:#111;'> 35.83KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE -10-checkpoint.ipynb <span style='color:#111;'> 15.91KB </span>","children":null,"spread":false},{"title":"RUS+SMOTE-checkpoint.ipynb <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE-checkpoint.ipynb <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"CNN-10-checkpoint.ipynb <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"RF-checkpoint.ipynb <span style='color:#111;'> 45.69KB </span>","children":null,"spread":false},{"title":"data preprocessing(UNSW-NB15)-checkpoint.ipynb <span style='color:#111;'> 19.83KB </span>","children":null,"spread":false},{"title":"MLP-2-checkpoint.ipynb <span style='color:#111;'> 72.50KB </span>","children":null,"spread":false},{"title":"CNN -2-checkpoint.ipynb <span style='color:#111;'> 68.40KB </span>","children":null,"spread":false},{"title":"SGM-checkpoint.ipynb <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"ROS,SMOTE,ADASYN-checkpoint.ipynb <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"GMM + SMOTE -10-checkpoint.ipynb <span style='color:#111;'> 15.55KB </span>","children":null,"spread":false},{"title":"GMM + SMOTE-2-checkpoint.ipynb <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false},{"title":"feature selection(DAE)-checkpoint.ipynb <span style='color:#111;'> 36.01KB </span>","children":null,"spread":false},{"title":"RUS+SMOTE-10-checkpoint.ipynb <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"imbalance processing","children":[{"title":"RUS+SMOTE.ipynb <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE.ipynb <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"ROS,SMOTE,ADASYN.ipynb <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"SGM.ipynb <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"classification decision","children":[{"title":"RF.ipynb <span style='color:#111;'> 45.69KB </span>","children":null,"spread":false},{"title":"CNN.ipynb <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"MLP.ipynb <span style='color:#111;'> 100.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"feature selection(DAE).ipynb <span style='color:#111;'> 36.01KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.98KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"data preprocessing(CICIDS2017).ipynb <span style='color:#111;'> 35.83KB </span>","children":null,"spread":false},{"title":"data preprocessing(UNSW-NB15).ipynb <span style='color:#111;'> 19.83KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]