smote的matlab代码-SGM-CNN:我们的基于流的网络入侵检测模型的实现(针对COMNET论文)

上传者: 38632825 | 上传时间: 2022-05-23 09:24:45 | 文件大小: 341KB | 文件类型: ZIP
smote的matlab代码SGM-CNN 一种将类不平衡处理与深度学习相结合的基于流的网络入侵检测模型:SGM-CNN。 版权所有:黄璐璐、张红波(郑州大学信息工程学院) 本次NIDS的两位贡献者是Lulu Huang女士和SN ENGR。 张红坡()。 如果您有任何问题,请随时给我们发送电子邮件。 请引用我们的论文,以防您发现我们的工作有用。 (1) Hongpo Zhang、Lulu Huang、Chase Q. Wu 和 Zhanbo Li:一种基于 SMOTE 和高斯混合模型的有效卷积神经网络,用于不平衡数据集中的入侵检测。 计算机网络 (2020), doi:10.1016/j.comnet.2020.107315 (2) Hongpo Zhang, Chase Q. Wu, Shan Gao, Zongmin Wang, Yuxiao Xu and Yongpeng Liu: An Effective deep learning based scheme for network intrusion detection, in: 2018 24th Internationa

文件下载

资源详情

[{"title":"( 28 个子文件 341KB ) smote的matlab代码-SGM-CNN:我们的基于流的网络入侵检测模型的实现(针对COMNET论文)","children":[{"title":"SGM-CNN-master","children":[{"title":".ipynb_checkpoints","children":[{"title":"MLP-10-checkpoint.ipynb <span style='color:#111;'> 100.10KB </span>","children":null,"spread":false},{"title":"data preprocessing(CICIDS2017)-checkpoint.ipynb <span style='color:#111;'> 35.83KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE -10-checkpoint.ipynb <span style='color:#111;'> 15.91KB </span>","children":null,"spread":false},{"title":"RUS+SMOTE-checkpoint.ipynb <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE-checkpoint.ipynb <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"CNN-10-checkpoint.ipynb <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"RF-checkpoint.ipynb <span style='color:#111;'> 45.69KB </span>","children":null,"spread":false},{"title":"data preprocessing(UNSW-NB15)-checkpoint.ipynb <span style='color:#111;'> 19.83KB </span>","children":null,"spread":false},{"title":"MLP-2-checkpoint.ipynb <span style='color:#111;'> 72.50KB </span>","children":null,"spread":false},{"title":"CNN -2-checkpoint.ipynb <span style='color:#111;'> 68.40KB </span>","children":null,"spread":false},{"title":"SGM-checkpoint.ipynb <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"ROS,SMOTE,ADASYN-checkpoint.ipynb <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"GMM + SMOTE -10-checkpoint.ipynb <span style='color:#111;'> 15.55KB </span>","children":null,"spread":false},{"title":"GMM + SMOTE-2-checkpoint.ipynb <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false},{"title":"feature selection(DAE)-checkpoint.ipynb <span style='color:#111;'> 36.01KB </span>","children":null,"spread":false},{"title":"RUS+SMOTE-10-checkpoint.ipynb <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"imbalance processing","children":[{"title":"RUS+SMOTE.ipynb <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"K-means + SMOTE.ipynb <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"ROS,SMOTE,ADASYN.ipynb <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"SGM.ipynb <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"classification decision","children":[{"title":"RF.ipynb <span style='color:#111;'> 45.69KB </span>","children":null,"spread":false},{"title":"CNN.ipynb <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"MLP.ipynb <span style='color:#111;'> 100.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"feature selection(DAE).ipynb <span style='color:#111;'> 36.01KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.98KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"data preprocessing(CICIDS2017).ipynb <span style='color:#111;'> 35.83KB </span>","children":null,"spread":false},{"title":"data preprocessing(UNSW-NB15).ipynb <span style='color:#111;'> 19.83KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明