是一个专注于零售行业的商业智能数据集,通常用于数据分析、市场研究和决策支持。它可能基于真实的零售业务数据,经过整理和匿名化处理,以供数据分析师、研究人员和机器学习工程师使用。数据集的构建旨在为零售企业提供深入的业务洞察,帮助其优化运营策略、提升客户满意度和提高市场竞争力。该数据集可用于多种分析和建模任务:销售预测:通过历史销售数据,利用机器学习模型预测未来的销售趋势,帮助零售商优化库存管理和资源分配。客户行为分析:通过客户购买记录和行为数据,进行客户细分和个性化推荐,提升客户满意度和忠诚度。市场趋势分析:分析销售数据的时间序列,识别季节性变化和市场趋势,为营销策略提供依据。库存优化:通过销售和库存数据,优化库存水平,减少积压和缺货情况。能够为零售企业提供丰富的数据支持和深刻的业务洞察,帮助其在竞争激烈的市场中保持领先地位。
2025-09-29 23:25:37 837KB 机器学习 预测模型
1
标题所指的“超星学习助手5.4.zip”是一个压缩文件,其内容包含了一个特定版本的学习辅助软件。根据文件名称我们可以推断,该软件是“超星学习助手”的第5.4版,这表明它可能是一个更新版本,与之前的版本相比,可能包含了一些改进和新功能。然而,由于没有具体的文件列表内容和描述信息,我们无法得知该软件的具体功能、改进点或是它所面向的用户群体。 一般来说,学习辅助软件是为了帮助用户更好地学习和管理学习资料而设计的工具。这类软件可能包含如资料管理、学习计划制定、在线测试、互动学习等功能。随着技术的发展,这些软件还可能具备个性化推荐、学习效果评估和智能分析等功能,帮助用户更高效地学习。 考虑到“超星”作为一个品牌,可能已经在这个领域积累了一定的用户基础和品牌影响力。因此,5.4版可能是在原有版本的基础上进行了优化升级,比如改善用户界面、增强数据处理能力、增加新的学习资源或提高软件的兼容性和稳定性等。这种软件的更新一般会根据用户反馈和市场研究来进行,以确保满足用户的需求。 此外,由于压缩包通常用于将多个文件打包成一个文件以便于存储和传输,这表明5.4版本可能包含多个文件,比如程序文件、帮助文档、用户数据等。然而,由于缺乏具体的文件列表,我们无法提供更详细的分析。 由于这个文件是一个压缩包,用户通常需要使用解压缩软件来打开它。在使用之前,需要确保软件来源的安全性和可靠性,避免下载的软件携带恶意软件或病毒,对个人设备造成潜在威胁。 尽管我们没有足够的信息来详细描述超星学习助手5.4的具体内容,但我们可以推测它是一个旨在帮助用户提升学习效率和管理学习资源的软件工具。用户在使用该软件前,应当确保来源的可信度,并适当了解软件的功能和更新日志,以便更好地利用该软件提高学习效果。
2025-09-29 23:17:36 95.33MB
1
内容概要:本文介绍了一种基于DDPG(深度确定性策略梯度)算法的自适应PID参数控制方法,并详细展示了其在Matlab环境中的实现过程。传统的PID参数调节依赖于人工经验,难以应对复杂多变的工业环境。为解决这一问题,作者提出使用强化学习中的DDPG算法来自适应调整PID参数。文中首先介绍了PID控制器的基本概念以及传统调参方法的局限性,接着阐述了DDPG算法的工作原理,包括环境定义、奖励函数设计、演员-评论家双网络架构的具体实现方式。最后,通过锅炉温度控制实验验证了该方法的有效性和优越性。 适合人群:自动化控制领域的研究人员和技术人员,尤其是对智能控制算法感兴趣的读者。 使用场景及目标:适用于需要精确控制温度、压力等物理量的工业场合,如化工生产、电力系统等。目标是提高系统的稳定性和鲁棒性,减少人为干预,提升自动化程度。 阅读建议:读者可以通过阅读本文了解如何将现代机器学习技术应用于经典控制理论中,掌握DDPG算法的基本思想及其在Matlab中的具体实现步骤。同时,还可以根据自身需求修改被控对象模型,进一步拓展应用范围。
2025-09-29 17:57:16 667KB 强化学习 控制系统优化
1
可以从此页面获得的MNIST手写数字数据库的训练集为60,000个示例,而测试集为10,000个示例。它是NIST可提供的更大集合的子集。这些数字已进行尺寸规格化,并在固定尺寸的图像中居中。 对于那些想在实际数据上尝试学习技术和模式识别方法而又不花太多精力进行预处理和格式化的人们来说,这是一个很好的数据库。 该站点上有四个文件: train-images-idx3-ubyte.gz:训练集图像(9912422字节) train-labels-idx1-ubyte.gz:训练集标签( 28881 字节)t10k-images-idx3-ubyte.gz:测试集图像(1648877字节) )
2025-09-29 10:45:31 20.97MB 深度学习
1
PaddlePaddle (PArallel Distributed Deep LEarning 并行分布式深度学习)是百度研发的深度学习平台,具有易用,高效,灵活和可伸缩等特点,为百度内部多项产品提供深度学习算法支持。支持的特性易用性:为用户提供了直观且灵活的数据接口和模型定义接口灵活性:PaddlePaddle支持多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型,如带注意力机制或复杂记忆连接的神经机器翻译模型高效性:为充分发挥多种计算资源的效力,PaddlePaddle在计算、存储、架构、通信等多方面都做了细致优化,性能优异可伸缩性:PaddlePaddle全面支持多核、多GPU、多机环境,优化的通信实现使高吞吐与高性能成为可能,轻松应对大规模数据训练需求 标签:PaddlePaddle
2025-09-29 08:34:02 5.57MB 开源项目
1
强化学习算法复现研究:深度探究Reinforcement Learning-Based Fixed-Time轨迹跟踪控制机制及其在机械臂的应用——适应不确定性系统及输入饱和状态的自适应控制框架与简易代码实践指南。,《顶刊复现》(复现程度90%),Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,自适应强化学习机械臂控制,代码框架方便易懂,适用于所有控制研究爱好者。 ,核心关键词:顶刊复现; 强化学习; 固定时间轨迹跟踪控制; 不确定机械臂; 输入饱和; 自适应控制; 代码框架; 控制研究爱好者。,《基于强化学习的机械臂固定时间轨迹跟踪控制:复现程度高达90%》
2025-09-29 03:11:49 555KB
1
本书通过真实场景项目,系统讲解机器学习核心技能,涵盖数据预处理、模型构建、评估与部署。从汽车价格预测到客户流失分析,再到服装图像分类,项目覆盖回归、分类与深度学习。重点突出模型部署,使用Flask、Docker、AWS Lambda及Kubernetes实现生产化应用。全书以实践为导向,融合工程思维,帮助读者掌握20%的核心知识解决80%的实际问题,快速构建可落地的机器学习作品集。配套代码与数据开放,适合动手学习。
2025-09-28 16:35:03 76.76MB 机器学习 项目实战 模型部署
1
软件介绍/相关专题/下载地址/猜你喜欢/网友评论/ LabVIEW NXG是最新推出的Labview工程设计软件,NI公司在2017年宣布推出了下一代LabVIEW工程系统设计软件的第一版LabVIEW NXGV1.0,LabVIEW NXG可以帮助工程师快速的完成设计、测试等多个步骤,主要是为非编程人员高效解决工程挑战,并且为他们提供解决方案,LabVIEW NXG则通过一种实现测量自动化的创新方式,在基于配置的软件和自定义编程语言之间建立了桥梁,让各个领域的专家可以将关注焦点集中在最重要的事情上,即关注问题本身而非工具。设计师们从零开始设计这个软件,实现精简的工作流程。常见的应用程序可以使用简单的基于配置的方式,更复杂的应用则使用LabVIEW语言G代码的完全开放式的图形化编程能力。”LabVIEW NXG为工程师们提供了用于交互式采集、分析和可视化数据集的工程工作流程,结合内置的拖放式工程用户界面开发和固有的数据探索功能,LabVIEW NXG是将数据采集变成真正有用信息的理想工具,帮助工程师进行台式测量,通过新的非编程工作流程大幅提高其工作效率,以获取并迭代分析测量数据,非编程
2025-09-28 00:46:12 84B 编程语言
1
### 自学式学习:从无标签数据中进行迁移学习 #### 概述 自学式学习(self-taught learning)是一种新型的机器学习框架,旨在利用无标签数据来提高监督分类任务的表现。与传统的半监督学习或迁移学习不同,自学式学习不假设无标签数据遵循与有标签数据相同的类别标签或生成分布。这意味着可以使用大量从互联网随机下载的无标签图像、音频样本或文本文档来改进特定图像、音频或文本分类任务的表现。由于这类无标签数据获取相对容易,因此自学式学习在许多实际的学习问题中具有广泛的应用前景。 #### 主要贡献 本文提出了一个实现自学式学习的方法,该方法利用稀疏编码来构建使用无标签数据形成的更高级特征。这些特征能够形成简洁的输入表示,并显著提高分类性能。当使用支持向量机(SVM)进行分类时,作者还展示了如何为这种表示学习Fisher核的方法。 #### 自学式学习框架 自学式学习的关键在于如何有效地利用无标签数据。为了实现这一目标,文章提出了一种基于稀疏编码的特征构建方法。具体来说: - **稀疏编码**:通过稀疏编码技术,可以从大量的无标签数据中学习到一组稀疏表示。这些表示通常包含了一些对数据有意义的特征,这些特征可能对于后续的分类任务非常有用。 - **特征构建**:通过对无标签数据集应用稀疏编码,可以得到一系列稀疏特征,这些特征进一步被用来构建更高层次的表示。这些高级表示捕捉了数据中的结构化信息,有助于提升分类器的表现。 - **分类器训练**:将构建好的高级特征作为输入,用于训练分类器(如支持向量机)。对于支持向量机而言,还可以进一步优化其内核函数(如Fisher核),以更好地适应特定的任务需求。 #### 实验验证 文章通过一系列实验验证了自学式学习的有效性。实验结果表明,在有限的有标签数据情况下,通过利用大量易于获取的无标签数据,能够显著提高分类任务的准确率。这为解决现实世界中经常面临的有标签数据稀缺问题提供了一种新的解决方案。 #### 结论与展望 自学式学习作为一种新兴的学习框架,为解决监督学习中常见的有标签数据不足问题提供了一个新的视角。通过利用广泛存在的无标签数据资源,不仅能够在一定程度上缓解数据标注的成本问题,还能够有效提升模型的泛化能力。未来的研究方向包括探索更多有效的特征构建方法以及如何在不同的应用场景中更高效地利用无标签数据等。 #### 总结 自学式学习是吴恩达等人提出的一种机器学习框架,它利用无标签数据来改进监督分类任务的性能。这种方法不依赖于无标签数据和有标签数据之间存在相同的类别标签或生成分布,而是通过稀疏编码等技术构建更高层次的特征表示,从而改善分类效果。自学式学习为处理实际问题中常见的有标签数据稀缺问题提供了一个有力工具,具有重要的理论意义和应用价值。
2025-09-27 19:54:23 474KB 迁移学习 吴恩达 自我学习
1
【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含两种分类,分别是:names: ['clear-road', 'ice-road']。 资源文件内包含:Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件。 应用场景: 1、高速公路:道路结冰检测算法可以应用于高速公路的结冰预警与监控体系,提前识别出可能结冰的路段和时间点,为交通管理部门提供决策支持。 2、城市道路:通过道路结冰检测算法,可以实时监测城市道路的结冰情况,为城市交通管理提供及时、准确的信息。 3、特殊路段:道路结冰检测算法可以针对桥梁、隧道出入口等进行定制化设计,提高监测的准确性和针对性。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2025-09-27 16:55:12 98.96MB 数据集 计算机视觉 深度学习 YOLO
1