Abstract: Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models. However, existing methods largely ignore the reprogramming property of deep models and thus may not fully unleash their intrinsic strength: without modifying parameters of a well-trained deep model, we can reprogram this model for a new purpose via data-level manipulation (e.g., adding a specific feature perturbation to the data). This property motivates us to
2026-01-06 19:41:18
3.9MB
数据集
1