Role2Vec ⠀ ⠀ 基于学习角色的图嵌入的可扩展并行gensim实现(IJCAI 2018) 。 抽象的 随机游走是许多现有网络嵌入方法的核心。 但是,这样的算法由于使用随机游走而具有许多局限性,例如,由于这些方法所产生的特征与顶点身份相关联,因此无法转移到新的节点和图上。 在这项工作中,我们介绍了Role2Vec框架,该框架使用了归因于随机游走的灵活概念,并为泛化现有方法(例如DeepWalk,node2vec和许多利用随机游走的其他方法)奠定了基础。 我们提出的框架使这些方法可以更广泛地应用于转导和归纳学习,以及在具有属性的图上使用(如果可用)。 这是通过学习泛化到新节点和图的功能来实现的。 我们表明,我们提出的框架是有效的,平均AUC改善了16.55%,同时所需的空间比各种图形上的现有方法平均少853倍。 二阶随机游走采样方法取自的参考实现。 该模型现在也可在包中找到。
2022-05-14 17:39:27 4.35MB machine-learning research deep-learning tensorflow
1
tensorflow-chatbot-中文 :person_running: [中文聊天机器人]具有bahdanau注意和Word2Vec预训练嵌入的seq2seq模型的Tensorflow实现 此基于撰写的。 如何 [选项1]重新训练模型 $ git clone https://github.com/AdrianHsu/tensorflow-chatbot-chinese.git # put your own training/eval data in the correct path, as shown above $ ./run.sh [选项2]使用预先训练的保护程序文件测试模型 您应该在下载经过预训练的模型,然后将其放入save/目录。 确保您的输入已经放置在正确的路径中,并且已通过文本分段API(例如jieba)进行了预处理。 $ ./hw2_seq2seq.sh 操作方法(网络) 您必须先下载冻结
2022-05-13 18:27:54 13.64MB nlp deep-learning tensorflow chatbot
1
计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X 用于自动标记的深度学习模型
1
决策算法在许多不同的应用中被使用。传统的设计决策算法的方法采用原则和简化的建模,在此基础上,人们可以通过易于处理的优化来确定决策。最近,深度学习方法正在变得越来越流行,这种方法使用从数据调整的高度参数架构,而不依赖于数学模型。基于模型的优化和以数据为中心的深度学习通常被认为是不同的学科。在这里,我们将它们描述为一个在特异性和参数化方面不断变化的连续光谱的边缘,并为位于这个光谱中间的方法提供一个教程式的展示,称为基于模型的深度学习。在我们的演示中,我们还附带了超分辨率和随机控制方面的运行示例,并展示了如何使用所提供的特性和每种详细方法来表示它们。将基于模型的优化和深度学习结合在一起,在生物医学成像和数字通信等各种应用中使用实验结果,证明了这种结合的好处。
2022-05-12 21:05:39 2.1MB 深度学习 文档资料 人工智能
3dgan-chainer 3D生成对抗网络的Chainer实现。 结果 一些好的样品产生了椅子。 (50纪元) python generate_samples.py result/trained_models/Generator_50epoch.npz 要求 链接器(2.0.1) 科学的 scikit图像 h5py pip install scipy scikit-image h5py 可选的 如果要绘制体素,则需要 。 截至2017年10月19日,未发行版本的matplotlib仅包含功能 matplotlib 2.1.0 + 323.ge6448bafc pip install git+https://github.com/matplotlib/matplotlib 数据集 我使用了ShapeNet-v2数据集。 培训脚本支持.binbox或.h5扩展名。 描述你的数据集路径DATASET_PATH在train.py 。 .binvox 只需在ShapeNet-v2中使用.binvox文件
1
基于方面的情感分析 给定句子中的某个方面字词,预测该方面字词的情感标签 该项目的所有详细信息都可以在找到 MemNet代码是
1
SHAP(SHapley Additive exPlanations)是一种游戏理论方法,用于解释任何机器学习模型的输出。 它使用博弈论中的经典Shapley值及其相关扩展将最佳信用分配与本地解释联系起来(详细信息和引文,请参见)。 安装 Shap可以从或 安装: pip install shap or conda install -c conda-forge shap TreeExplainer的树集成示例(XGBoost / LightGBM / CatBoost / scikit-learn / pyspark模型) 尽管SHAP可以解释任何机器学习模型的输出,但我们已经为树集成方法开发了一种高速精确算法(请参见)。 XGBoost , LightGBM , CatBoost , scikit-learn和pyspark树模型支持快速的C ++实现: import xgboost import shap # load JS visualization code to notebook shap . initjs () # train XGBoost model X , y
1
机器学习工程师纳米学位 顶石项目 项目:预测库存移动方向 安装 此项目需要Python 3.6和已安装的以下Python库: 您还需要安装软件才能运行和执行 我们建议安装 ,这是一个预包装的Python发行版,其中包含该项目的大多数必需库和软件。 代码 该代码在Notebooks文件夹中提供。 由于大小限制,不包括CSV文件和Clfs文件夹(经过训练的分类器池)。 跑步 在终端或命令窗口中,导航到顶层项目目录Notebooks/ (包含此自述文件)并运行以下命令之一: ipython notebook {name of notebook file}.ipynb 或者 jupyter notebook {name of notebook file}.ipynb 这将在浏览器中打开iPython Notebook软件和项目文件。 数据 该数据集由Github上某个帖子的1分钟库存数据
1
人像卡通化(卡通照片) 中文版| 该项目为卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“ AI卡通秀”小程序体验卡通化效果。 也可以前往我们的ai开放平台进行在线体验: ://ai.minivision.cn/#/coreability/cartoon 更新 2020.12.2 :基于开源的paddlepaddle的项目 。 2020.12.1 :增加onnx测试模型,详情请见 。 简介 人像卡通风格呈现的目标是,在保持原始图像ID信息和纹理细节的同时,将真实照片转换为卡通风格的非真实感图像。我们的思路是,从大量照片/卡通数据中习得照片到卡通一
2022-05-10 17:19:54 1.99MB computer-vision deep-learning gan avatar-generator
1
很棒的蒙特卡洛树搜索论文。 ⠀ ⠀⠀ 蒙特卡罗树搜索论文的精选列表,其中包含来自以下会议/期刊的实现: 机器学习 计算机视觉 自然语言处理 数据 人工智能 UAI 机器人RAS 游戏CIG 关于图分类、梯度提升、分类/回归树、欺诈检测和社区检测论文的类似集合以及实现。 2021年 学习停止:动态模拟蒙特卡罗树搜索(AAAI 2021) Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh [纸] Dec-SGTS:多代理协调的分散子目标树搜索(AAAI 2021) 李明龙、蔡忠轩、杨文静、吴丽霞、徐颖慧、王季 [纸] 改进的 POMDP 树搜索规划与优先行动分支 (AAAI 2021) 约翰·默恩、阿尼尔·耶尔迪兹、劳伦斯·布什、Tapan Mukerji、Mykel J. Kochenderfer [纸]
1